Satz von Hartogs (Mengenlehre)

In der Mengenlehre besagt der Satz von Hartogs (nach dem deutschen Mathematiker Fritz Hartogs, 1915), dass es zu jeder Menge A wenigstens eine wohlgeordnete Menge B gibt, deren Kardinalität nicht durch die Kardinalität von A beschränkt wird.

Bemerkenswert ist, dass diese Aussage bereits in der Zermelo-Fraenkel-Mengenlehre ZF gilt, also ohne Verwendung des Auswahlaxioms bewiesen werden kann. Daher kann man diesen Satz verwenden, wenn man Varianten des Auswahlaxioms untersucht. Die scheinbar komplizierte Formulierung ("Kardinalität von B ist nicht kleiner oder gleich der Kardinalität von A") ist hier notwendig, weil man ohne Auswahlaxiom nicht zeigen kann, dass zwei beliebige Mengen vergleichbar sind.

Formale Aussage

X {\displaystyle X} sei eine Menge gemäß der Zermelo-Fraenkel-Mengenlehre ohne das Auswahlaxiom. Dann existiert eine Kardinalzahl α {\displaystyle \alpha } (auch als Hartogs-Zahl von X {\displaystyle X} bezeichnet) derart, dass die Menge α {\displaystyle \alpha } wohlgeordnet ist und folgendes gilt:

  • α {\displaystyle \alpha } ist die kleinste wohlgeordnete Kardinalzahl, welche nicht kleiner oder gleich der Kardinalität von X {\displaystyle X} ist (das heißt: welche sich nicht injektiv in die Menge X {\displaystyle X} abbilden lässt.)

Anmerkung

Im System ZFC (also ZF + Auswahlaxiom AC) ist der Satz von Hartogs uninteressant, weil eine stärkere Version als Korollar des Wohlordnungssatzes und des Satzes von Cantor folgt: Für jede Menge X ist die Kardinalität der Potenzmenge von X echt größer als die von X.

Literatur

  • Friedrich Hartogs: Über das Problem der Wohlordnung. Mathematische Annalen Bd. 76, B. G. Teubner, Leipzig 1915
  • Yannis P. Moschovakis: Notes on Set Theory. Springer Verlag, New York 2006, ISBN 0-387-28722-1
  • Mathematische Annalen Bd. 76 bei digizeitschriften.de