't Hooft symbol

Mathematical symbol used in algebras

The 't Hooft symbol is a collection of numbers which allows one to express the generators of the SU(2) Lie algebra in terms of the generators of Lorentz algebra. The symbol is a blend between the Kronecker delta and the Levi-Civita symbol. It was introduced by Gerard 't Hooft. It is used in the construction of the BPST instanton.

Definition

η μ ν a {\displaystyle \eta _{\mu \nu }^{a}} is the 't Hooft symbol:

η μ ν a = { ϵ a μ ν μ , ν = 1 , 2 , 3 δ a ν μ = 4 δ a μ ν = 4 0 μ = ν = 4 {\displaystyle \eta _{\mu \nu }^{a}={\begin{cases}\epsilon ^{a\mu \nu }&\mu ,\nu =1,2,3\\-\delta ^{a\nu }&\mu =4\\\delta ^{a\mu }&\nu =4\\0&\mu =\nu =4\end{cases}}}

Where δ a ν {\displaystyle \delta ^{a\nu }} and δ a μ {\displaystyle \delta ^{a\mu }} are instances of the Kronecker delta, and ϵ a μ ν {\displaystyle \epsilon ^{a\mu \nu }} is the Levi-Civita symbol.

In other words, they are defined by

( a = 1 , 2 , 3 ;   μ , ν = 1 , 2 , 3 , 4 ;   ϵ 1234 = + 1 {\displaystyle a=1,2,3;~\mu ,\nu =1,2,3,4;~\epsilon _{1234}=+1} )

η a μ ν = ϵ a μ ν 4 + δ a μ δ ν 4 δ a ν δ μ 4 {\displaystyle \eta _{a\mu \nu }=\epsilon _{a\mu \nu 4}+\delta _{a\mu }\delta _{\nu 4}-\delta _{a\nu }\delta _{\mu 4}}
η ¯ a μ ν = ϵ a μ ν 4 δ a μ δ ν 4 + δ a ν δ μ 4 {\displaystyle {\bar {\eta }}_{a\mu \nu }=\epsilon _{a\mu \nu 4}-\delta _{a\mu }\delta _{\nu 4}+\delta _{a\nu }\delta _{\mu 4}}

where the latter are the anti-self-dual 't Hooft symbols.

Matrix Form

In matrix form, the 't Hooft symbols are

η 1 μ ν = [ 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 ] , η 2 μ ν = [ 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 ] , η 3 μ ν = [ 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 ] , {\displaystyle \eta _{1\mu \nu }={\begin{bmatrix}0&0&0&1\\0&0&1&0\\0&-1&0&0\\-1&0&0&0\end{bmatrix}},\quad \eta _{2\mu \nu }={\begin{bmatrix}0&0&-1&0\\0&0&0&1\\1&0&0&0\\0&-1&0&0\end{bmatrix}},\quad \eta _{3\mu \nu }={\begin{bmatrix}0&1&0&0\\-1&0&0&0\\0&0&0&1\\0&0&-1&0\end{bmatrix}},}

and their anti-self-duals are the following:

η ¯ 1 μ ν = [ 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 ] , η ¯ 2 μ ν = [ 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 ] , η ¯ 3 μ ν = [ 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 ] . {\displaystyle {\bar {\eta }}_{1\mu \nu }={\begin{bmatrix}0&0&0&-1\\0&0&1&0\\0&-1&0&0\\1&0&0&0\end{bmatrix}},\quad {\bar {\eta }}_{2\mu \nu }={\begin{bmatrix}0&0&-1&0\\0&0&0&-1\\1&0&0&0\\0&1&0&0\end{bmatrix}},\quad {\bar {\eta }}_{3\mu \nu }={\begin{bmatrix}0&1&0&0\\-1&0&0&0\\0&0&0&-1\\0&0&1&0\end{bmatrix}}.}

Properties

They satisfy the self-duality and the anti-self-duality properties:

η a μ ν = 1 2 ϵ μ ν ρ σ η a ρ σ   , η ¯ a μ ν = 1 2 ϵ μ ν ρ σ η ¯ a ρ σ   {\displaystyle \eta _{a\mu \nu }={\frac {1}{2}}\epsilon _{\mu \nu \rho \sigma }\eta _{a\rho \sigma }\ ,\qquad {\bar {\eta }}_{a\mu \nu }=-{\frac {1}{2}}\epsilon _{\mu \nu \rho \sigma }{\bar {\eta }}_{a\rho \sigma }\ }

Some other properties are

ϵ a b c η b μ ν η c ρ σ = δ μ ρ η a ν σ + δ ν σ η a μ ρ δ μ σ η a ν ρ δ ν ρ η a μ σ {\displaystyle \epsilon _{abc}\eta _{b\mu \nu }\eta _{c\rho \sigma }=\delta _{\mu \rho }\eta _{a\nu \sigma }+\delta _{\nu \sigma }\eta _{a\mu \rho }-\delta _{\mu \sigma }\eta _{a\nu \rho }-\delta _{\nu \rho }\eta _{a\mu \sigma }}
η a μ ν η a ρ σ = δ μ ρ δ ν σ δ μ σ δ ν ρ + ϵ μ ν ρ σ   , {\displaystyle \eta _{a\mu \nu }\eta _{a\rho \sigma }=\delta _{\mu \rho }\delta _{\nu \sigma }-\delta _{\mu \sigma }\delta _{\nu \rho }+\epsilon _{\mu \nu \rho \sigma }\ ,}
η a μ ρ η b μ σ = δ a b δ ρ σ + ϵ a b c η c ρ σ   , {\displaystyle \eta _{a\mu \rho }\eta _{b\mu \sigma }=\delta _{ab}\delta _{\rho \sigma }+\epsilon _{abc}\eta _{c\rho \sigma }\ ,}
ϵ μ ν ρ θ η a σ θ = δ σ μ η a ν ρ + δ σ ρ η a μ ν δ σ ν η a μ ρ   , {\displaystyle \epsilon _{\mu \nu \rho \theta }\eta _{a\sigma \theta }=\delta _{\sigma \mu }\eta _{a\nu \rho }+\delta _{\sigma \rho }\eta _{a\mu \nu }-\delta _{\sigma \nu }\eta _{a\mu \rho }\ ,}
η a μ ν η a μ ν = 12   , η a μ ν η b μ ν = 4 δ a b   , η a μ ρ η a μ σ = 3 δ ρ σ   . {\displaystyle \eta _{a\mu \nu }\eta _{a\mu \nu }=12\ ,\quad \eta _{a\mu \nu }\eta _{b\mu \nu }=4\delta _{ab}\ ,\quad \eta _{a\mu \rho }\eta _{a\mu \sigma }=3\delta _{\rho \sigma }\ .}

The same holds for η ¯ {\displaystyle {\bar {\eta }}} except for

η ¯ a μ ν η ¯ a ρ σ = δ μ ρ δ ν σ δ μ σ δ ν ρ ϵ μ ν ρ σ   . {\displaystyle {\bar {\eta }}_{a\mu \nu }{\bar {\eta }}_{a\rho \sigma }=\delta _{\mu \rho }\delta _{\nu \sigma }-\delta _{\mu \sigma }\delta _{\nu \rho }-\epsilon _{\mu \nu \rho \sigma }\ .}

and

ϵ μ ν ρ θ η ¯ a σ θ = δ σ μ η ¯ a ν ρ δ σ ρ η ¯ a μ ν + δ σ ν η ¯ a μ ρ   , {\displaystyle \epsilon _{\mu \nu \rho \theta }{\bar {\eta }}_{a\sigma \theta }=-\delta _{\sigma \mu }{\bar {\eta }}_{a\nu \rho }-\delta _{\sigma \rho }{\bar {\eta }}_{a\mu \nu }+\delta _{\sigma \nu }{\bar {\eta }}_{a\mu \rho }\ ,}

Obviously η a μ ν η ¯ b μ ν = 0 {\displaystyle \eta _{a\mu \nu }{\bar {\eta }}_{b\mu \nu }=0} due to different duality properties.

Many properties of these are tabulated in the appendix of 't Hooft's paper[1] and also in the article by Belitsky et al.[2]

See also

References

  1. ^ 't Hooft, G. (1976). "Computation of the quantum effects due to a four-dimensional pseudoparticle". Physical Review D. 14 (12): 3432–3450. Bibcode:1976PhRvD..14.3432T. doi:10.1103/PhysRevD.14.3432.
  2. ^ Belitsky, A. V.; Vandoren, S.; Nieuwenhuizen, P. V. (2000). "Yang-Mills and D-instantons". Classical and Quantum Gravity. 17 (17): 3521–3570. arXiv:hep-th/0004186. Bibcode:2000CQGra..17.3521B. doi:10.1088/0264-9381/17/17/305. S2CID 16107344.