9-simplex

Regular decayotton
(9-simplex)

Orthogonal projection
inside Petrie polygon
Type Regular 9-polytope
Family simplex
Schläfli symbol {3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagram
8-faces 10 8-simplex
7-faces 45 7-simplex
6-faces 120 6-simplex
5-faces 210 5-simplex
4-faces 252 5-cell
Cells 210 tetrahedron
Faces 120 triangle
Edges 45
Vertices 10
Vertex figure 8-simplex
Petrie polygon decagon
Coxeter group A9 [3,3,3,3,3,3,3,3]
Dual Self-dual
Properties convex

In geometry, a 9-simplex is a self-dual regular 9-polytope. It has 10 vertices, 45 edges, 120 triangle faces, 210 tetrahedral cells, 252 5-cell 4-faces, 210 5-simplex 5-faces, 120 6-simplex 6-faces, 45 7-simplex 7-faces, and 10 8-simplex 8-faces. Its dihedral angle is cos−1(1/9), or approximately 83.62°.

It can also be called a decayotton, or deca-9-tope, as a 10-facetted polytope in 9-dimensions.. The name decayotton is derived from deca for ten facets in Greek and yotta (a variation of "oct" for eight), having 8-dimensional facets, and -on.

Coordinates

The Cartesian coordinates of the vertices of an origin-centered regular decayotton having edge length 2 are:

( 1 / 45 ,   1 / 6 ,   1 / 28 ,   1 / 21 ,   1 / 15 ,   1 / 10 ,   1 / 6 ,   1 / 3 ,   ± 1 ) {\displaystyle \left({\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ {\sqrt {1/3}},\ \pm 1\right)}
( 1 / 45 ,   1 / 6 ,   1 / 28 ,   1 / 21 ,   1 / 15 ,   1 / 10 ,   1 / 6 ,   2 1 / 3 ,   0 ) {\displaystyle \left({\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ -2{\sqrt {1/3}},\ 0\right)}
( 1 / 45 ,   1 / 6 ,   1 / 28 ,   1 / 21 ,   1 / 15 ,   1 / 10 ,   3 / 2 ,   0 ,   0 ) {\displaystyle \left({\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ -{\sqrt {3/2}},\ 0,\ 0\right)}
( 1 / 45 ,   1 / 6 ,   1 / 28 ,   1 / 21 ,   1 / 15 ,   2 2 / 5 ,   0 ,   0 ,   0 ) {\displaystyle \left({\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ -2{\sqrt {2/5}},\ 0,\ 0,\ 0\right)}
( 1 / 45 ,   1 / 6 ,   1 / 28 ,   1 / 21 ,   5 / 3 ,   0 ,   0 ,   0 ,   0 ) {\displaystyle \left({\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ -{\sqrt {5/3}},\ 0,\ 0,\ 0,\ 0\right)}
( 1 / 45 ,   1 / 6 ,   1 / 28 ,   12 / 7 ,   0 ,   0 ,   0 ,   0 ,   0 ) {\displaystyle \left({\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ -{\sqrt {12/7}},\ 0,\ 0,\ 0,\ 0,\ 0\right)}
( 1 / 45 ,   1 / 6 ,   7 / 4 ,   0 ,   0 ,   0 ,   0 ,   0 ,   0 ) {\displaystyle \left({\sqrt {1/45}},\ 1/6,\ -{\sqrt {7/4}},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}
( 1 / 45 ,   4 / 3 ,   0 ,   0 ,   0 ,   0 ,   0 ,   0 ,   0 ) {\displaystyle \left({\sqrt {1/45}},\ -4/3,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}
( 3 1 / 5 ,   0 ,   0 ,   0 ,   0 ,   0 ,   0 ,   0 ,   0 ) {\displaystyle \left(-3{\sqrt {1/5}},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}

More simply, the vertices of the 9-simplex can be positioned in 10-space as permutations of (0,0,0,0,0,0,0,0,0,1). These are the vertices of one Facet of the 10-orthoplex.

Images

orthographic projections
Ak Coxeter plane A9 A8 A7 A6
Graph
Dihedral symmetry [10] [9] [8] [7]
Ak Coxeter plane A5 A4 A3 A2
Graph
Dihedral symmetry [6] [5] [4] [3]

References

  • Coxeter, H.S.M.:
    • — (1973). "Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)". Regular Polytopes (3rd ed.). Dover. p. 296. ISBN 0-486-61480-8.
    • Sherk, F. Arthur; McMullen, Peter; Thompson, Anthony C.; Weiss, Asia Ivic, eds. (1995). Kaleidoscopes: Selected Writings of H.S.M. Coxeter. Wiley. ISBN 978-0-471-01003-6.
      • (Paper 22) — (1940). "Regular and Semi Regular Polytopes I". Math. Zeit. 46: 380–407. doi:10.1007/BF01181449. S2CID 186237114.
      • (Paper 23) — (1985). "Regular and Semi-Regular Polytopes II". Math. Zeit. 188 (4): 559–591. doi:10.1007/BF01161657. S2CID 120429557.
      • (Paper 24) — (1988). "Regular and Semi-Regular Polytopes III". Math. Zeit. 200: 3–45. doi:10.1007/BF01161745. S2CID 186237142.
  • Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). "26. Hemicubes: 1n1". The Symmetries of Things. p. 409. ISBN 978-1-56881-220-5.
  • Johnson, Norman (1991), Uniform Polytopes (Manuscript)
    • Johnson, N.W. (1966). The Theory of Uniform Polytopes and Honeycombs (PhD). University of Toronto. OCLC 258527038.
  • Klitzing, Richard. "9D uniform polytopes (polyyotta) x3o3o3o3o3o3o3o3o — day".

External links

  • Glossary for hyperspace, George Olshevsky.
  • Polytopes of Various Dimensions
  • Multi-dimensional Glossary
  • v
  • t
  • e
Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122 • 221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132 • 231 • 321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142 • 241 • 421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k2 • 2k1 • k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds