Almost prime

Demonstration, with Cuisenaire rods, of the 2-almost prime nature of the number 6

In number theory, a natural number is called k-almost prime if it has k prime factors.[1][2][3] More formally, a number n is k-almost prime if and only if Ω(n) = k, where Ω(n) is the total number of primes in the prime factorization of n (can be also seen as the sum of all the primes' exponents):

Ω ( n ) := a i if n = p i a i . {\displaystyle \Omega (n):=\sum a_{i}\qquad {\mbox{if}}\qquad n=\prod p_{i}^{a_{i}}.}

A natural number is thus prime if and only if it is 1-almost prime, and semiprime if and only if it is 2-almost prime. The set of k-almost primes is usually denoted by Pk. The smallest k-almost prime is 2k. The first few k-almost primes are:

k k-almost primes OEIS sequence
1 2, 3, 5, 7, 11, 13, 17, 19, … A000040
2 4, 6, 9, 10, 14, 15, 21, 22, … A001358
3 8, 12, 18, 20, 27, 28, 30, … A014612
4 16, 24, 36, 40, 54, 56, 60, … A014613
5 32, 48, 72, 80, 108, 112, … A014614
6 64, 96, 144, 160, 216, 224, … A046306
7 128, 192, 288, 320, 432, 448, … A046308
8 256, 384, 576, 640, 864, 896, … A046310
9 512, 768, 1152, 1280, 1728, … A046312
10 1024, 1536, 2304, 2560, … A046314
11 2048, 3072, 4608, 5120, … A069272
12 4096, 6144, 9216, 10240, … A069273
13 8192, 12288, 18432, 20480, … A069274
14 16384, 24576, 36864, 40960, … A069275
15 32768, 49152, 73728, 81920, … A069276
16 65536, 98304, 147456, … A069277
17 131072, 196608, 294912, … A069278
18 262144, 393216, 589824, … A069279
19 524288, 786432, 1179648, … A069280
20 1048576, 1572864, 2359296, … A069281

The number πk(n) of positive integers less than or equal to n with exactly k prime divisors (not necessarily distinct) is asymptotic to:[4][relevant?]

π k ( n ) ( n log n ) ( log log n ) k 1 ( k 1 ) ! , {\displaystyle \pi _{k}(n)\sim \left({\frac {n}{\log n}}\right){\frac {(\log \log n)^{k-1}}{(k-1)!}},}

a result of Landau.[5] See also the Hardy–Ramanujan theorem.[relevant?]

Properties

  • The multiple of a k 1 {\displaystyle k_{1}} -almost prime and a k 2 {\displaystyle k_{2}} -almost prime is a ( k 1 + k 2 ) {\displaystyle (k_{1}+k_{2})} -almost prime.
  • A k {\displaystyle k} -almost prime cannot have a n {\displaystyle n} -almost prime as a factor for all n > k {\displaystyle n>k} .

References

  1. ^ Sándor, József; Dragoslav, Mitrinović S.; Crstici, Borislav (2006). Handbook of Number Theory I. Springer. p. 316. doi:10.1007/1-4020-3658-2. ISBN 978-1-4020-4215-7.
  2. ^ Rényi, Alfréd A. (1948). "On the representation of an even number as the sum of a single prime and single almost-prime number". Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya (in Russian). 12 (1): 57–78.
  3. ^ Heath-Brown, D. R. (May 1978). "Almost-primes in arithmetic progressions and short intervals". Mathematical Proceedings of the Cambridge Philosophical Society. 83 (3): 357–375. Bibcode:1978MPCPS..83..357H. doi:10.1017/S0305004100054657. S2CID 122691474.
  4. ^ Tenenbaum, Gerald (1995). Introduction to Analytic and Probabilistic Number Theory. Cambridge University Press. ISBN 978-0-521-41261-2.
  5. ^ Landau, Edmund (1953) [first published 1909]. "§ 56, Über Summen der Gestalt p x F ( p , x ) {\displaystyle \sum _{p\leq x}F(p,x)} ". Handbuch der Lehre von der Verteilung der Primzahlen. Vol. 1. Chelsea Publishing Company. p. 211.

External links

  • Weisstein, Eric W. "Almost prime". MathWorld.
  • v
  • t
  • e
Prime number classes
By formula
  • Fermat (22n + 1)
  • Mersenne (2p − 1)
  • Double Mersenne (22p−1 − 1)
  • Wagstaff (2p + 1)/3
  • Proth (k·2n + 1)
  • Factorial (n! ± 1)
  • Primorial (pn# ± 1)
  • Euclid (pn# + 1)
  • Pythagorean (4n + 1)
  • Pierpont (2m·3n + 1)
  • Quartan (x4 + y4)
  • Solinas (2m ± 2n ± 1)
  • Cullen (n·2n + 1)
  • Woodall (n·2n − 1)
  • Cuban (x3 − y3)/(x − y)
  • Leyland (xy + yx)
  • Thabit (3·2n − 1)
  • Williams ((b−1)·bn − 1)
  • Mills (A3n)
By integer sequenceBy propertyBase-dependentPatterns
  • Twin (p, p + 2)
  • Bi-twin chain (n ± 1, 2n ± 1, 4n ± 1, …)
  • Triplet (p, p + 2 or p + 4, p + 6)
  • Quadruplet (p, p + 2, p + 6, p + 8)
  • k-tuple
  • Cousin (p, p + 4)
  • Sexy (p, p + 6)
  • Chen
  • Sophie Germain/Safe (p, 2p + 1)
  • Cunningham (p, 2p ± 1, 4p ± 3, 8p ± 7, ...)
  • Arithmetic progression (p + a·n, n = 0, 1, 2, 3, ...)
  • Balanced (consecutive p − n, p, p + n)
By sizeComplex numbersComposite numbersRelated topicsFirst 60 primes
  • 2
  • 3
  • 5
  • 7
  • 11
  • 13
  • 17
  • 19
  • 23
  • 29
  • 31
  • 37
  • 41
  • 43
  • 47
  • 53
  • 59
  • 61
  • 67
  • 71
  • 73
  • 79
  • 83
  • 89
  • 97
  • 101
  • 103
  • 107
  • 109
  • 113
  • 127
  • 131
  • 137
  • 139
  • 149
  • 151
  • 157
  • 163
  • 167
  • 173
  • 179
  • 181
  • 191
  • 193
  • 197
  • 199
  • 211
  • 223
  • 227
  • 229
  • 233
  • 239
  • 241
  • 251
  • 257
  • 263
  • 269
  • 271
  • 277
  • 281
  • v
  • t
  • e
Classes of natural numbers
Of the form a × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via a sieve
  • Mathematics portal
Authority control databases: National Edit this at Wikidata
  • Germany