Arrowhead matrix

In the mathematical field of linear algebra, an arrowhead matrix is a square matrix containing zeros in all entries except for the first row, first column, and main diagonal, these entries can be any number.[1][2] In other words, the matrix has the form

A = [ 0 0 0 0 0 0 0 0 0 0 0 0 ] . {\displaystyle A={\begin{bmatrix}\,\!*&*&*&*&*\\\,\!*&*&0&0&0\\\,\!*&0&*&0&0\\\,\!*&0&0&*&0\\\,\!*&0&0&0&*\end{bmatrix}}.}

Any symmetric permutation of the arrowhead matrix, P T A P {\displaystyle P^{T}AP} , where P is a permutation matrix, is a (permuted) arrowhead matrix. Real symmetric arrowhead matrices are used in some algorithms for finding of eigenvalues and eigenvectors.[3]

Real symmetric arrowhead matrices

Let A be a real symmetric (permuted) arrowhead matrix of the form

A = [ D z z T α ] , {\displaystyle A={\begin{bmatrix}D&z\\z^{T}&\alpha \end{bmatrix}},}

where D = d i a g ( d 1 , d 2 , , d n 1 ) {\displaystyle D=\mathop {\mathrm {diag} } (d_{1},d_{2},\ldots ,d_{n-1})} is diagonal matrix of order n−1, z = [ ζ 1 ζ 2 ζ n 1 ] T {\displaystyle z={\begin{bmatrix}\zeta _{1}&\zeta _{2}&\cdots &\zeta _{n-1}\end{bmatrix}}^{T}} is a vector and α {\displaystyle \alpha } is a scalar. Note that here the arrow is pointing to the bottom right.

Let

A = V Λ V T {\displaystyle A=V\Lambda V^{T}}

be the eigenvalue decomposition of A, where Λ = diag ( λ 1 , λ 2 , , λ n ) {\displaystyle \Lambda =\operatorname {diag} (\lambda _{1},\lambda _{2},\ldots ,\lambda _{n})} is a diagonal matrix whose diagonal elements are the eigenvalues of A, and V = [ v 1 v n ] {\displaystyle V={\begin{bmatrix}v_{1}&\cdots &v_{n}\end{bmatrix}}} is an orthonormal matrix whose columns are the corresponding eigenvectors. The following holds:

  • If ζ i = 0 {\displaystyle \zeta _{i}=0} for some i, then the pair ( d i , e i ) {\displaystyle (d_{i},e_{i})} , where e i {\displaystyle e_{i}} is the i-th standard basis vector, is an eigenpair of A. Thus, all such rows and columns can be deleted, leaving the matrix with all ζ i 0 {\displaystyle \zeta _{i}\neq 0} .
  • The Cauchy interlacing theorem implies that the sorted eigenvalues of A interlace the sorted elements d i {\displaystyle d_{i}} : if d 1 d 2 d n 1 {\displaystyle d_{1}\geq d_{2}\geq \cdots \geq d_{n-1}} (this can be attained by symmetric permutation of rows and columns without loss of generality), and if λ i {\displaystyle \lambda _{i}} s are sorted accordingly, then λ 1 d 1 λ 2 d 2 λ n 1 d n 1 λ n {\displaystyle \lambda _{1}\geq d_{1}\geq \lambda _{2}\geq d_{2}\geq \cdots \geq \lambda _{n-1}\geq d_{n-1}\geq \lambda _{n}} .
  • If d i = d j {\displaystyle d_{i}=d_{j}} , for some i j {\displaystyle i\neq j} , the above inequality implies that d i {\displaystyle d_{i}} is an eigenvalue of A. The size of the problem can be reduced by annihilating ζ j {\displaystyle \zeta _{j}} with a Givens rotation in the ( i , j ) {\displaystyle (i,j)} -plane and proceeding as above.

Symmetric arrowhead matrices arise in descriptions of radiationless transitions in isolated molecules and oscillators vibrationally coupled with a Fermi liquid.[4]

Eigenvalues and eigenvectors

A symmetric arrowhead matrix is irreducible if ζ i 0 {\displaystyle \zeta _{i}\neq 0} for all i and d i d j {\displaystyle d_{i}\neq d_{j}} for all i j {\displaystyle i\neq j} . The eigenvalues of an irreducible real symmetric arrowhead matrix are the zeros of the secular equation

f ( λ ) = α λ i = 1 n 1 ζ i 2 d i λ α λ z T ( D λ I ) 1 z = 0 {\displaystyle f(\lambda )=\alpha -\lambda -\sum _{i=1}^{n-1}{\frac {\zeta _{i}^{2}}{d_{i}-\lambda }}\equiv \alpha -\lambda -z^{T}(D-\lambda I)^{-1}z=0}

which can be, for example, computed by the bisection method. The corresponding eigenvectors are equal to

v i = x i x i 2 , x i = [ ( D λ i I ) 1 z 1 ] , i = 1 , , n . {\displaystyle v_{i}={\frac {x_{i}}{\|x_{i}\|_{2}}},\quad x_{i}={\begin{bmatrix}\left(D-\lambda _{i}I\right)^{-1}z\\-1\end{bmatrix}},\quad i=1,\ldots ,n.}

Direct application of the above formula may yield eigenvectors which are not numerically sufficiently orthogonal.[1] The forward stable algorithm which computes each eigenvalue and each component of the corresponding eigenvector to almost full accuracy is described in.[2] The Julia version of the software is available.[5]

Inverses

Let A be an irreducible real symmetric (permuted) arrowhead matrix of the form

A = [ D z z T α ] . {\displaystyle A={\begin{bmatrix}D&z\\z^{T}&\alpha \end{bmatrix}}.}

If d i 0 {\displaystyle d_{i}\neq 0} for all i, the inverse is a rank-one modification of a diagonal matrix (diagonal-plus-rank-one matrix or DPR1):

A 1 = [ D 1 0 ] + ρ u u T , {\displaystyle A^{-1}={\begin{bmatrix}D^{-1}&\\&0\end{bmatrix}}+\rho uu^{T},}

where

u = [ D 1 z 1 ] , ρ = 1 α z T D 1 z . {\displaystyle u={\begin{bmatrix}D^{-1}z\\-1\end{bmatrix}},\quad \rho ={\frac {1}{\alpha -z^{T}D^{-1}z}}.}

If d i = 0 {\displaystyle d_{i}=0} for some i, the inverse is a permuted irreducible real symmetric arrowhead matrix:

A 1 = [ D 1 1 w 1 0 0 w 1 T b w 2 T 1 / ζ i 0 w 2 D 2 1 0 0 1 / ζ i 0 0 ] {\displaystyle A^{-1}={\begin{bmatrix}D_{1}^{-1}&w_{1}&0&0\\w_{1}^{T}&b&w_{2}^{T}&1/\zeta _{i}\\0&w_{2}&D_{2}^{-1}&0\\0&1/\zeta _{i}&0&0\end{bmatrix}}}

where

D 1 = d i a g ( d 1 , d 2 , , d i 1 ) , D 2 = d i a g ( d i + 1 , d i + 2 , , d n 1 ) , z 1 = [ ζ 1 ζ 2 ζ i 1 ] T , z 2 = [ ζ i + 1 ζ i + 2 ζ n 1 ] T , w 1 = D 1 1 z 1 1 ζ i , w 2 = D 2 1 z 2 1 ζ i , b = 1 ζ i 2 ( a + z 1 T D 1 1 z 1 + z 2 T D 2 1 z 2 ) . {\displaystyle {\begin{alignedat}{2}D_{1}&=\mathop {\mathrm {diag} } (d_{1},d_{2},\ldots ,d_{i-1}),\\D_{2}&=\mathop {\mathrm {diag} } (d_{i+1},d_{i+2},\ldots ,d_{n-1}),\\z_{1}&={\begin{bmatrix}\zeta _{1}&\zeta _{2}&\cdots &\zeta _{i-1}\end{bmatrix}}^{T},\\z_{2}&={\begin{bmatrix}\zeta _{i+1}&\zeta _{i+2}&\cdots &\zeta _{n-1}\end{bmatrix}}^{T},\\w_{1}&=-D_{1}^{-1}z_{1}{\frac {1}{\zeta _{i}}},\\w_{2}&=-D_{2}^{-1}z_{2}{\frac {1}{\zeta _{i}}},\\b&={\frac {1}{\zeta _{i}^{2}}}\left(-a+z_{1}^{T}D_{1}^{-1}z_{1}+z_{2}^{T}D_{2}^{-1}z_{2}\right).\end{alignedat}}}

References

  1. ^ a b O'Leary, D. P.; Stewart, G. W. (1990). "Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices". Journal of Computational Physics. 90 (2): 497–505. Bibcode:1990JCoPh..90..497O. doi:10.1016/0021-9991(90)90177-3.
  2. ^ a b Jakovcevic Stor, Nevena; Slapnicar, Ivan; Barlow, Jesse L. (2015). "Accurate eigenvalue decomposition of real symmetric arrowhead matrices and applications". Linear Algebra and Its Applications. 464: 62–89. arXiv:1302.7203. doi:10.1016/j.laa.2013.10.007. S2CID 119640612.
  3. ^ Gu, Ming; Eisenstat, Stanley C. (1995). "A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem". SIAM Journal on Matrix Analysis and Applications. 16: 172–191. doi:10.1137/S0895479892241287.
  4. ^ O'Leary, D.P.; Stewart, G.W. (October 1990). "Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices". Journal of Computational Physics. 90 (2): 497–505. Bibcode:1990JCoPh..90..497O. doi:10.1016/0021-9991(90)90177-3.
  5. ^ "Arrowhead.jl"
  • v
  • t
  • e
Matrix classes
Explicitly constrained entriesConstantConditions on eigenvalues or eigenvectorsSatisfying conditions on products or inversesWith specific applicationsUsed in statisticsUsed in graph theoryUsed in science and engineeringRelated terms