Benson's algorithm

Benson's algorithm, named after Harold Benson, is a method for solving multi-objective linear programming problems and vector linear programs. This works by finding the "efficient extreme points in the outcome set".[1] The primary concept in Benson's algorithm is to evaluate the upper image of the vector optimization problem by cutting planes.[2]

Idea of algorithm

Consider a vector linear program

min C P x  subject to  A x b {\displaystyle \min _{C}Px\;{\text{ subject to }}Ax\geq b}

for P R q × n {\displaystyle P\in \mathbb {R} ^{q\times n}} , A R m × n {\displaystyle A\in \mathbb {R} ^{m\times n}} , b R m {\displaystyle b\in \mathbb {R} ^{m}} and a polyhedral convex ordering cone C {\displaystyle C} having nonempty interior and containing no lines. The feasible set is S = { x R n : A x b } {\displaystyle S=\{x\in \mathbb {R} ^{n}:\;Ax\geq b\}} . In particular, Benson's algorithm finds the extreme points of the set P [ S ] + C {\displaystyle P[S]+C} , which is called upper image.[2]

In case of C = R + q := { y R q : y 1 0 , , y q 0 } {\displaystyle C=\mathbb {R} _{+}^{q}:=\{y\in \mathbb {R} ^{q}:y_{1}\geq 0,\dots ,y_{q}\geq 0\}} , one obtains the special case of a multi-objective linear program (multiobjective optimization).

Dual algorithm

There is a dual variant of Benson's algorithm,[3] which is based on geometric duality[4] for multi-objective linear programs.

Implementations

Bensolve - a free VLP solver

  • www.bensolve.org

Inner

  • Link to github

References

  1. ^ Harold P. Benson (1998). "An Outer Approximation Algorithm for Generating All Efficient Extreme Points in the Outcome Set of a Multiple Objective Linear Programming Problem". Journal of Global Optimization. 13 (1): 1–24. doi:10.1023/A:1008215702611.
  2. ^ a b Andreas Löhne (2011). Vector Optimization with Infimum and Supremum. Springer. pp. 162–169. ISBN 9783642183508.
  3. ^ Ehrgott, Matthias; Löhne, Andreas; Shao, Lizhen (2011). "A dual variant of Benson's "outer approximation algorithm" for multiple objective linear programming". Journal of Global Optimization. 52 (4): 757–778. doi:10.1007/s10898-011-9709-y. ISSN 0925-5001.
  4. ^ Heyde, Frank; Löhne, Andreas (2008). "Geometric Duality in Multiple Objective Linear Programming" (PDF). SIAM Journal on Optimization. 19 (2): 836–845. doi:10.1137/060674831. ISSN 1052-6234.


  • v
  • t
  • e