Bergman space

In complex analysis, functional analysis and operator theory, a Bergman space, named after Stefan Bergman, is a function space of holomorphic functions in a domain D of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for 0 < p < ∞, the Bergman space Ap(D) is the space of all holomorphic functions f {\displaystyle f} in D for which the p-norm is finite:

f A p ( D ) := ( D | f ( x + i y ) | p d x d y ) 1 / p < . {\displaystyle \|f\|_{A^{p}(D)}:=\left(\int _{D}|f(x+iy)|^{p}\,\mathrm {d} x\,\mathrm {d} y\right)^{1/p}<\infty .}

The quantity f A p ( D ) {\displaystyle \|f\|_{A^{p}(D)}} is called the norm of the function f; it is a true norm if p 1 {\displaystyle p\geq 1} . Thus Ap(D) is the subspace of holomorphic functions that are in the space Lp(D). The Bergman spaces are Banach spaces, which is a consequence of the estimate, valid on compact subsets K of D:

sup z K | f ( z ) | C K f L p ( D ) . {\displaystyle \sup _{z\in K}|f(z)|\leq C_{K}\|f\|_{L^{p}(D)}.}

(1)

Thus convergence of a sequence of holomorphic functions in Lp(D) implies also compact convergence, and so the limit function is also holomorphic.

If p = 2, then Ap(D) is a reproducing kernel Hilbert space, whose kernel is given by the Bergman kernel.

Special cases and generalisations

If the domain D is bounded, then the norm is often given by:

f A p ( D ) := ( D | f ( z ) | p d A ) 1 / p ( f A p ( D ) ) , {\displaystyle \|f\|_{A^{p}(D)}:=\left(\int _{D}|f(z)|^{p}\,dA\right)^{1/p}\;\;\;\;\;(f\in A^{p}(D)),}

where A {\displaystyle A} is a normalised Lebesgue measure of the complex plane, i.e. dA = dz/Area(D). Alternatively dA = dz/π is used, regardless of the area of D. The Bergman space is usually defined on the open unit disk D {\displaystyle \mathbb {D} } of the complex plane, in which case A p ( D ) := A p {\displaystyle A^{p}(\mathbb {D} ):=A^{p}} . In the Hilbert space case, given: f ( z ) = n = 0 a n z n A 2 {\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}\in A^{2}} , we have:

f A 2 2 := 1 π D | f ( z ) | 2 d z = n = 0 | a n | 2 n + 1 , {\displaystyle \|f\|_{A^{2}}^{2}:={\frac {1}{\pi }}\int _{\mathbb {D} }|f(z)|^{2}\,dz=\sum _{n=0}^{\infty }{\frac {|a_{n}|^{2}}{n+1}},}

that is, A2 is isometrically isomorphic to the weighted p(1/(n + 1)) space.[1] In particular the polynomials are dense in A2. Similarly, if D = C {\displaystyle \mathbb {C} } +, the right (or the upper) complex half-plane, then:

F A 2 ( C + ) 2 := 1 π C + | F ( z ) | 2 d z = 0 | f ( t ) | 2 d t t , {\displaystyle \|F\|_{A^{2}(\mathbb {C} _{+})}^{2}:={\frac {1}{\pi }}\int _{\mathbb {C} _{+}}|F(z)|^{2}\,dz=\int _{0}^{\infty }|f(t)|^{2}{\frac {dt}{t}},}

where F ( z ) = 0 f ( t ) e t z d t {\displaystyle F(z)=\int _{0}^{\infty }f(t)e^{-tz}\,dt} , that is, A2( C {\displaystyle \mathbb {C} } +) is isometrically isomorphic to the weighted Lp1/t (0,∞) space (via the Laplace transform).[2][3]

The weighted Bergman space Ap(D) is defined in an analogous way,[1] i.e.,

f A w p ( D ) := ( D | f ( x + i y ) | 2 w ( x + i y ) d x d y ) 1 / p , {\displaystyle \|f\|_{A_{w}^{p}(D)}:=\left(\int _{D}|f(x+iy)|^{2}\,w(x+iy)\,dx\,dy\right)^{1/p},}

provided that w : D → [0, ∞) is chosen in such way, that A w p ( D ) {\displaystyle A_{w}^{p}(D)} is a Banach space (or a Hilbert space, if p = 2). In case where D = D {\displaystyle D=\mathbb {D} } , by a weighted Bergman space A α p {\displaystyle A_{\alpha }^{p}} [4] we mean the space of all analytic functions f such that:

f A α p := ( ( α + 1 ) D | f ( z ) | p ( 1 | z | 2 ) α d A ( z ) ) 1 / p < , {\displaystyle \|f\|_{A_{\alpha }^{p}}:=\left((\alpha +1)\int _{\mathbb {D} }|f(z)|^{p}\,(1-|z|^{2})^{\alpha }dA(z)\right)^{1/p}<\infty ,}

and similarly on the right half-plane (i.e., A α p ( C + ) {\displaystyle A_{\alpha }^{p}(\mathbb {C} _{+})} ) we have:[5]

f A α p ( C + ) := ( 1 π C + | f ( x + i y ) | p x α d x d y ) 1 / p , {\displaystyle \|f\|_{A_{\alpha }^{p}(\mathbb {C} _{+})}:=\left({\frac {1}{\pi }}\int _{\mathbb {C} _{+}}|f(x+iy)|^{p}x^{\alpha }\,dx\,dy\right)^{1/p},}

and this space is isometrically isomorphic, via the Laplace transform, to the space L 2 ( R + , d μ α ) {\displaystyle L^{2}(\mathbb {R} _{+},\,d\mu _{\alpha })} ,[6][7] where:

d μ α := Γ ( α + 1 ) 2 α t α + 1 d t {\displaystyle d\mu _{\alpha }:={\frac {\Gamma (\alpha +1)}{2^{\alpha }t^{\alpha +1}}}\,dt}

(here Γ denotes the Gamma function).

Further generalisations are sometimes considered, for example A ν 2 {\displaystyle A_{\nu }^{2}} denotes a weighted Bergman space (often called a Zen space[3]) with respect to a translation-invariant positive regular Borel measure ν {\displaystyle \nu } on the closed right complex half-plane C + ¯ {\displaystyle {\overline {\mathbb {C} _{+}}}} , that is:

A ν p := { f : C + C  analytic : f A ν p := ( sup ε > 0 C + ¯ | f ( z + ε ) | p d ν ( z ) ) 1 / p < } . {\displaystyle A_{\nu }^{p}:=\left\{f:\mathbb {C} _{+}\longrightarrow \mathbb {C} {\text{ analytic}}\;:\;\|f\|_{A_{\nu }^{p}}:=\left(\sup _{\varepsilon >0}\int _{\overline {\mathbb {C} _{+}}}|f(z+\varepsilon )|^{p}\,d\nu (z)\right)^{1/p}<\infty \right\}.}

Reproducing kernels

The reproducing kernel k z A 2 {\displaystyle k_{z}^{A^{2}}} of A2 at point z D {\displaystyle z\in \mathbb {D} } is given by:[1]

k z A 2 ( ζ ) = 1 ( 1 z ¯ ζ ) 2 ( ζ D ) , {\displaystyle k_{z}^{A^{2}}(\zeta )={\frac {1}{(1-{\overline {z}}\zeta )^{2}}}\;\;\;\;\;(\zeta \in \mathbb {D} ),}

and similarly, for A 2 ( C + ) {\displaystyle A^{2}(\mathbb {C} _{+})} we have:[5]

k z A 2 ( C + ) ( ζ ) = 1 ( z ¯ + ζ ) 2 ( ζ C + ) , {\displaystyle k_{z}^{A^{2}(\mathbb {C} _{+})}(\zeta )={\frac {1}{({\overline {z}}+\zeta )^{2}}}\;\;\;\;\;(\zeta \in \mathbb {C} _{+}),}

In general, if φ {\displaystyle \varphi } maps a domain Ω {\displaystyle \Omega } conformally onto a domain D {\displaystyle D} , then:[1]

k z A 2 ( Ω ) ( ζ ) = k φ ( z ) A 2 ( D ) ( φ ( ζ ) ) φ ( z ) ¯ φ ( ζ ) ( z , ζ Ω ) . {\displaystyle k_{z}^{A^{2}(\Omega )}(\zeta )=k_{\varphi (z)}^{{\mathcal {A}}^{2}(D)}(\varphi (\zeta ))\,{\overline {\varphi '(z)}}\varphi '(\zeta )\;\;\;\;\;(z,\zeta \in \Omega ).}

In weighted case we have:[4]

k z A α 2 ( ζ ) = α + 1 ( 1 z ¯ ζ ) α + 2 ( z , ζ D ) , {\displaystyle k_{z}^{A_{\alpha }^{2}}(\zeta )={\frac {\alpha +1}{(1-{\overline {z}}\zeta )^{\alpha +2}}}\;\;\;\;\;(z,\zeta \in \mathbb {D} ),}

and:[5]

k z A α 2 ( C + ) ( ζ ) = 2 α ( α + 1 ) ( z ¯ + ζ ) α + 2 ( z , ζ C + ) . {\displaystyle k_{z}^{A_{\alpha }^{2}(\mathbb {C} _{+})}(\zeta )={\frac {2^{\alpha }(\alpha +1)}{({\overline {z}}+\zeta )^{\alpha +2}}}\;\;\;\;\;(z,\zeta \in \mathbb {C} _{+}).}

References

  1. ^ a b c d Duren, Peter L.; Schuster, Alexander (2004), Bergman spaces, Mathematical Series and Monographs, American Mathematical Society, ISBN 978-0-8218-0810-8
  2. ^ Duren, Peter L. (1969), Extension of a theorem of Carleson (PDF), vol. 75, Bulletin of the American Mathematical Society, pp. 143–146
  3. ^ a b Jacob, Brigit; Partington, Jonathan R.; Pott, Sandra (2013-02-01). "On Laplace-Carleson embedding theorems". Journal of Functional Analysis. 264 (3): 783–814. arXiv:1201.1021. doi:10.1016/j.jfa.2012.11.016. S2CID 7770226.
  4. ^ a b Cowen, Carl; MacCluer, Barbara (1995-04-27), Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, p. 27, ISBN 9780849384929
  5. ^ a b c Elliott, Sam J.; Wynn, Andrew (2011), "Composition Operators on the Weighted Bergman Spaces of the Half-Plane", Proceedings of the Edinburgh Mathematical Society, 54 (2): 374–379, arXiv:0910.0408, doi:10.1017/S0013091509001412, S2CID 18811195
  6. ^ Duren, Peter L.; Gallardo-Gutiérez, Eva A.; Montes-Rodríguez, Alfonso (2007-06-03), A Paley-Wiener theorem for Bergman spaces with application to invariant subspaces, vol. 39, Bulletin of the London Mathematical Society, pp. 459–466, archived from the original on 2015-12-24
  7. ^ Gallrado-Gutiérez, Eva A.; Partington, Jonathan R.; Segura, Dolores (2009), Cyclic vectors and invariant subspaces for Bergman and Dirichlet shifts (PDF), vol. 62, Journal of Operator Theory, pp. 199–214

Further reading

  • Bergman, Stefan (1970), The kernel function and conformal mapping, Mathematical Surveys, vol. 5 (2nd ed.), American Mathematical Society
  • Hedenmalm, H.; Korenblum, B.; Zhu, K. (2000), Theory of Bergman Spaces, Springer, ISBN 978-0-387-98791-0
  • Richter, Stefan (2001) [1994], "Bergman spaces", Encyclopedia of Mathematics, EMS Press.

See also