Besov space

Generalization of Sobolev spaces

In mathematics, the Besov space (named after Oleg Vladimirovich Besov) B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} is a complete quasinormed space which is a Banach space when 1 ≤ p, q ≤ ∞. These spaces, as well as the similarly defined Triebel–Lizorkin spaces, serve to generalize more elementary function spaces such as Sobolev spaces and are effective at measuring regularity properties of functions.

Definition

Several equivalent definitions exist. One of them is given below.

Let

Δ h f ( x ) = f ( x h ) f ( x ) {\displaystyle \Delta _{h}f(x)=f(x-h)-f(x)}

and define the modulus of continuity by

ω p 2 ( f , t ) = sup | h | t Δ h 2 f p {\displaystyle \omega _{p}^{2}(f,t)=\sup _{|h|\leq t}\left\|\Delta _{h}^{2}f\right\|_{p}}

Let n be a non-negative integer and define: s = n + α with 0 < α ≤ 1. The Besov space B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} contains all functions f such that

f W n , p ( R ) , 0 | ω p 2 ( f ( n ) , t ) t α | q d t t < . {\displaystyle f\in W^{n,p}(\mathbf {R} ),\qquad \int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}<\infty .}

Norm

The Besov space B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} is equipped with the norm

f B p , q s ( R ) = ( f W n , p ( R ) q + 0 | ω p 2 ( f ( n ) , t ) t α | q d t t ) 1 q {\displaystyle \left\|f\right\|_{B_{p,q}^{s}(\mathbf {R} )}=\left(\|f\|_{W^{n,p}(\mathbf {R} )}^{q}+\int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}\right)^{\frac {1}{q}}}

The Besov spaces B 2 , 2 s ( R ) {\displaystyle B_{2,2}^{s}(\mathbf {R} )} coincide with the more classical Sobolev spaces H s ( R ) {\displaystyle H^{s}(\mathbf {R} )} .

If p = q {\displaystyle p=q} and s {\displaystyle s} is not an integer, then B p , p s ( R ) = W ¯ s , p ( R ) {\displaystyle B_{p,p}^{s}(\mathbf {R} )={\bar {W}}^{s,p}(\mathbf {R} )} , where W ¯ s , p ( R ) {\displaystyle {\bar {W}}^{s,p}(\mathbf {R} )} denotes the Sobolev–Slobodeckij space.

References

  • Triebel, Hans (1992). Theory of Function Spaces II. doi:10.1007/978-3-0346-0419-2. ISBN 978-3-0346-0418-5.
  • Besov, O. V. (1959). "On some families of functional spaces. Imbedding and extension theorems". Dokl. Akad. Nauk SSSR (in Russian). 126: 1163–1165. MR 0107165.
  • DeVore, R. and Lorentz, G. "Constructive Approximation", 1993.
  • DeVore, R., Kyriazis, G. and Wang, P. "Multiscale characterizations of Besov spaces on bounded domains", Journal of Approximation Theory 93, 273-292 (1998).
  • Leoni, Giovanni (2017). A First Course in Sobolev Spaces: Second Edition. Graduate Studies in Mathematics. 181. American Mathematical Society. pp. 734. ISBN 978-1-4704-2921-8
  • v
  • t
  • e
Functional analysis (topicsglossary)
Spaces
Properties
TheoremsOperatorsAlgebrasOpen problemsApplicationsAdvanced topics
  • Category
Stub icon

This mathematical analysis–related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e