Biorthogonal system

In mathematics, a biorthogonal system is a pair of indexed families of vectors

v ~ i  in  E  and  u ~ i  in  F {\displaystyle {\tilde {v}}_{i}{\text{ in }}E{\text{ and }}{\tilde {u}}_{i}{\text{ in }}F}
such that
v ~ i , u ~ j = δ i , j , {\displaystyle \left\langle {\tilde {v}}_{i},{\tilde {u}}_{j}\right\rangle =\delta _{i,j},}
where E {\displaystyle E} and F {\displaystyle F} form a pair of topological vector spaces that are in duality, , {\displaystyle \langle \,\cdot ,\cdot \,\rangle } is a bilinear mapping and δ i , j {\displaystyle \delta _{i,j}} is the Kronecker delta.

An example is the pair of sets of respectively left and right eigenvectors of a matrix, indexed by eigenvalue, if the eigenvalues are distinct.[1]

A biorthogonal system in which E = F {\displaystyle E=F} and v ~ i = u ~ i {\displaystyle {\tilde {v}}_{i}={\tilde {u}}_{i}} is an orthonormal system.

Projection

Related to a biorthogonal system is the projection

P := i I u ~ i v ~ i , {\displaystyle P:=\sum _{i\in I}{\tilde {u}}_{i}\otimes {\tilde {v}}_{i},}
where ( u v ) ( x ) := u v , x ; {\displaystyle (u\otimes v)(x):=u\langle v,x\rangle ;} its image is the linear span of { u ~ i : i I } , {\displaystyle \left\{{\tilde {u}}_{i}:i\in I\right\},} and the kernel is { v ~ i , = 0 : i I } . {\displaystyle \left\{\left\langle {\tilde {v}}_{i},\cdot \right\rangle =0:i\in I\right\}.}

Construction

Given a possibly non-orthogonal set of vectors u = ( u i ) {\displaystyle \mathbf {u} =\left(u_{i}\right)} and v = ( v i ) {\displaystyle \mathbf {v} =\left(v_{i}\right)} the projection related is

P = i , j u i ( v , u 1 ) j , i v j , {\displaystyle P=\sum _{i,j}u_{i}\left(\langle \mathbf {v} ,\mathbf {u} \rangle ^{-1}\right)_{j,i}\otimes v_{j},}
where v , u {\displaystyle \langle \mathbf {v} ,\mathbf {u} \rangle } is the matrix with entries ( v , u ) i , j = v i , u j . {\displaystyle \left(\langle \mathbf {v} ,\mathbf {u} \rangle \right)_{i,j}=\left\langle v_{i},u_{j}\right\rangle .}

  • u ~ i := ( I P ) u i , {\displaystyle {\tilde {u}}_{i}:=(I-P)u_{i},} and v ~ i := ( I P ) v i {\displaystyle {\tilde {v}}_{i}:=(I-P)^{*}v_{i}} then is a biorthogonal system.

See also

  • Dual basis – Linear algebra concept
  • Dual space – In mathematics, vector space of linear forms
  • Dual pair
  • Orthogonality – Various meanings of the terms
  • Orthogonalization

References

  1. ^ Bhushan, Datta, Kanti (2008). Matrix And Linear Algebra, Edition 2: AIDED WITH MATLAB. PHI Learning Pvt. Ltd. p. 239. ISBN 9788120336186.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Jean Dieudonné, On biorthogonal systems Michigan Math. J. 2 (1953), no. 1, 7–20 [1]
  • v
  • t
  • e
Duality and spaces of linear maps
Basic conceptsTopologiesMain resultsMapsSubsetsOther concepts
  • Biorthogonal system
  • v
  • t
  • e
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
  • Category