Birkhoff interpolation

In mathematics, Birkhoff interpolation is an extension of polynomial interpolation. It refers to the problem of finding a polynomial P ( x ) {\displaystyle P(x)} of degree d {\displaystyle d} such that only certain derivatives have specified values at specified points:

P ( n i ) ( x i ) = y i for  i = 1 , , d , {\displaystyle P^{(n_{i})}(x_{i})=y_{i}\qquad {\mbox{for }}i=1,\ldots ,d,}

where the data points ( x i , y i ) {\displaystyle (x_{i},y_{i})} and the nonnegative integers n i {\displaystyle n_{i}} are given. It differs from Hermite interpolation in that it is possible to specify derivatives of P ( x ) {\displaystyle P(x)} at some points without specifying the lower derivatives or the polynomial itself. The name refers to George David Birkhoff, who first studied the problem in 1906.[1]

Existence and uniqueness of solutions

In contrast to Lagrange interpolation and Hermite interpolation, a Birkhoff interpolation problem does not always have a unique solution. For instance, there is no quadratic polynomial P ( x ) {\displaystyle P(x)} such that P ( 1 ) = P ( 1 ) = 0 {\displaystyle P(-1)=P(1)=0} and P ( 1 ) ( 0 ) = 1 {\displaystyle P^{(1)}(0)=1} . On the other hand, the Birkhoff interpolation problem where the values of P ( 1 ) ( 1 ) , P ( 0 ) {\displaystyle P^{(1)}(-1),P(0)} and P ( 1 ) ( 1 ) {\displaystyle P^{(1)}(1)} are given always has a unique solution.[2]

An important problem in the theory of Birkhoff interpolation is to classify those problems that have a unique solution. Schoenberg[3] formulates the problem as follows. Let d {\displaystyle d} denote the number of conditions (as above) and let k {\displaystyle k} be the number of interpolation points. Given a d × k {\displaystyle d\times k} matrix E {\displaystyle E} , all of whose entries are either 0 {\displaystyle 0} or 1 {\displaystyle 1} , such that exactly d {\displaystyle d} entries are 1 {\displaystyle 1} , then the corresponding problem is to determine P ( x ) {\displaystyle P(x)} such that

P ( j ) ( x i ) = y i , j ( i , j ) / e i j = 1 {\displaystyle P^{(j)}(x_{i})=y_{i,j}\qquad \forall (i,j)/e_{ij}=1}

The matrix E {\displaystyle E} is called the incidence matrix. For example, the incidence matrices for the interpolation problems mentioned in the previous paragraph are:

( 1 0 0 0 1 0 1 0 0 ) a n d ( 0 1 0 1 0 0 0 1 0 ) . {\displaystyle {\begin{pmatrix}1&0&0\\0&1&0\\1&0&0\end{pmatrix}}\qquad \mathrm {and} \qquad {\begin{pmatrix}0&1&0\\1&0&0\\0&1&0\end{pmatrix}}.}

Now the question is: Does a Birkhoff interpolation problem with a given incidence matrix E {\displaystyle E} have a unique solution for any choice of the interpolation points?


The case with k = 2 {\displaystyle k=2} interpolation points was tackled by George Pólya in 1931.[4] Let S m {\displaystyle S_{m}} denote the sum of the entries in the first m {\displaystyle m} columns of the incidence matrix:

S m = i = 1 k j = 1 m e i j . {\displaystyle S_{m}=\sum _{i=1}^{k}\sum _{j=1}^{m}e_{ij}.}

Then the Birkhoff interpolation problem with k = 2 {\displaystyle k=2} has a unique solution if and only if S m m m {\displaystyle S_{m}\geqslant m\quad \forall m} . Schoenberg showed that this is a necessary condition for all values of k {\displaystyle k} .

Some examples

Consider a differentiable function f ( x ) {\displaystyle f(x)} on [ a , b ] {\displaystyle [a,b]} , such that f ( a ) = f ( b ) {\displaystyle f(a)=f(b)} . Let us see that there is no Birkhoff interpolation quadratic polynomial such that P ( 1 ) ( c ) = f ( 1 ) ( c ) {\displaystyle P^{(1)}(c)=f^{(1)}(c)} where c = a + b 2 {\displaystyle c={\frac {a+b}{2}}} : Since f ( a ) = f ( b ) {\displaystyle f(a)=f(b)} , one may write the polynomial as P ( x ) = A ( x c ) 2 + B {\displaystyle P(x)=A(x-c)^{2}+B} (by completing the square) where A , B {\displaystyle A,B} are merely the interpolation coefficients. The derivative of the interpolation polynomial is given by P ( 1 ) ( x ) = 2 A ( x c ) 2 {\displaystyle P^{(1)}(x)=2A(x-c)^{2}} . This implies P ( 1 ) ( c ) = 0 {\displaystyle P^{(1)}(c)=0} , however this is absurd, since f ( 1 ) ( c ) {\displaystyle f^{(1)}(c)} is not necessarily 0 {\displaystyle 0} . The incidence matrix is given by:

( 1 0 0 0 1 0 1 0 0 ) 3 × 3 {\displaystyle {\begin{pmatrix}1&0&0\\0&1&0\\1&0&0\end{pmatrix}}_{3\times 3}}


Consider a differentiable function f ( x ) {\displaystyle f(x)} on [ a , b ] {\displaystyle [a,b]} , and denote x 0 = a , x 2 = b {\displaystyle x_{0}=a,x_{2}=b} with x 1 [ a , b ] {\displaystyle x_{1}\in [a,b]} . Let us see that there is indeed Birkhoff interpolation quadratic polynomial such that P ( x 1 ) = f ( x 1 ) {\displaystyle P(x_{1})=f(x_{1})} and P ( 1 ) ( x 0 ) = f ( 1 ) ( x 0 ) , P ( 1 ) ( x 2 ) = f ( 1 ) ( x 2 ) {\displaystyle P^{(1)}(x_{0})=f^{(1)}(x_{0}),P^{(1)}(x_{2})=f^{(1)}(x_{2})} . Construct the interpolating polynomial of f ( 1 ) ( x ) {\displaystyle f^{(1)}(x)} at the nodes x 0 , x 2 {\displaystyle x_{0},x_{2}} , such that P 1 ( x ) = f ( 1 ) ( x 2 ) f ( 1 ) ( x 0 ) x 2 x 0 ( x x 0 ) + f ( 1 ) ( x 0 ) {\displaystyle \displaystyle P_{1}(x)={\frac {f^{(1)}(x_{2})-f^{(1)}(x_{0})}{x_{2}-x_{0}}}(x-x_{0})+f^{(1)}(x_{0})} . Thus the polynomial : P 2 ( x ) = f ( x 1 ) + x 1 x P 1 ( t ) d t {\displaystyle \displaystyle P_{2}(x)=f(x_{1})+\int _{x_{1}}^{x}\!P_{1}(t)\;\mathrm {d} t} is the Birkhoff interpolating polynomial. The incidence matrix is given by:

( 0 1 0 1 0 0 0 1 0 ) 3 × 3 {\displaystyle {\begin{pmatrix}0&1&0\\1&0&0\\0&1&0\end{pmatrix}}_{3\times 3}}


Given a natural number N {\displaystyle N} , and a differentiable function f ( x ) {\displaystyle f(x)} on [ a , b ] {\displaystyle [a,b]} , is there a polynomial such that: P ( x 0 ) = f ( x 0 ) {\displaystyle P(x_{0})=f(x_{0})} and P ( 1 ) ( x i ) = f ( 1 ) ( x i ) {\displaystyle P^{(1)}(x_{i})=f^{(1)}(x_{i})} for i = 1 , , N {\displaystyle i=1,\cdots ,N} with x 0 , x 1 , , x N [ a , b ] {\displaystyle x_{0},x_{1},\cdots ,x_{N}\in [a,b]} ? Construct the Lagrange/Newton polynomial (same interpolating polynomial, different form to calculate and express them) P N 1 ( x ) {\displaystyle P_{N-1}(x)} that satisfies P N 1 ( x i ) = f ( 1 ) ( x i ) {\displaystyle P_{N-1}(x_{i})=f^{(1)}(x_{i})} for i = 1 , , N {\displaystyle i=1,\cdots ,N} , then the polynomial P N ( x ) = f ( x 0 ) + x 0 x P N 1 ( t ) d t {\displaystyle \displaystyle P_{N}(x)=f(x_{0})+\int _{x_{0}}^{x}\!P_{N-1}(t)\;\mathrm {d} t} is the Birkhoff interpolating polynomial satisfying the above conditions. The incidence matrix is given by:

( 1 0 0 0 0 1 0 0 0 1 0 0 ) N × N {\displaystyle {\begin{pmatrix}1&0&0&\cdots &0\\0&1&0&\cdots &0\\\vdots &\vdots &\vdots &\ddots &\vdots \\0&1&0&\cdots &0\\\end{pmatrix}}_{N\times N}}


Given a natural number N {\displaystyle N} , and a 2 N {\displaystyle 2N} differentiable function f ( x ) {\displaystyle f(x)} on [ a , b ] {\displaystyle [a,b]} , is there a polynomial such that: P ( k ) ( a ) = f ( k ) ( a ) {\displaystyle P^{(k)}(a)=f^{(k)}(a)} and P ( k ) ( b ) = f ( k ) ( b ) {\displaystyle P^{(k)}(b)=f^{(k)}(b)} for k = 0 , 2 , , 2 N {\displaystyle k=0,2,\cdots ,2N} ? Construct P 1 ( x ) {\displaystyle P_{1}(x)} as the interpolating polynomial of f ( x ) {\displaystyle f(x)} at x = a {\displaystyle x=a} and x = b {\displaystyle x=b} , such that P 1 ( x ) = f ( 2 N ) ( b ) f ( 2 N ) ( a ) b a ( x a ) + f ( 2 N ) ( a ) {\displaystyle P_{1}(x)={\frac {f^{(2N)}(b)-f^{(2N)}(a)}{b-a}}(x-a)+f^{(2N)}(a)} . Define then the iterates P k + 2 ( x ) = f ( 2 N 2 k ) ( b ) f ( 2 N 2 k ) ( a ) b a ( x a ) + f ( 2 N 2 k ) ( a ) + a x a t P k ( s ) d s d t {\displaystyle \displaystyle P_{k+2}(x)={\frac {f^{(2N-2k)}(b)-f^{(2N-2k)}(a)}{b-a}}(x-a)+f^{(2N-2k)}(a)+\int _{a}^{x}\!\int _{a}^{t}\!P_{k}(s)\;\mathrm {d} s\;\mathrm {d} t} . Then P 2 N + 1 ( x ) {\displaystyle P_{2N+1}(x)} is the Birkhoff interpolating polynomial. The incidence matrix is given by:

( 1 0 1 0 1 0 1 0 ) 2 × N {\displaystyle {\begin{pmatrix}1&0&1&0\cdots \\1&0&1&0\cdots \\\end{pmatrix}}_{2\times N}}

References

  1. ^ Birkhoff, George David (1906). "General mean value and remainder theorems with applications to mechanical differentiation and quadrature". Transactions of the American Mathematical Society. 7 (1): 107–136. doi:10.1090/S0002-9947-1906-1500736-1. ISSN 0002-9947.
  2. ^ "American Mathematical Society". American Mathematical Society. Retrieved 2022-05-19.
  3. ^ Schoenberg, I. J (1966-12-01). "On Hermite-Birkhoff interpolation". Journal of Mathematical Analysis and Applications. 16 (3): 538–543. doi:10.1016/0022-247X(66)90160-0. ISSN 0022-247X.
  4. ^ Pólya, G. (1931). "Bemerkung zur Interpolation und zur Näherungstheorie der Balkenbiegung". ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik (in German). 11 (6): 445–449. doi:10.1002/zamm.19310110620.