Biswarup Mukhopadhyaya

Indian physicist (born 1960)

  • Rajabazar Science College, Calcutta University
Known forStudies on high energy colliders, Higgs bosons, neutrinosAwardsScientific careerFields
  • High energy physics
Institutions

Biswarup Mukhopadhyaya (born 1 August 1960) is an Indian theoretical high energy physicist and a senior professor at Indian Institute of Science Education and Research, Kolkata (IISER Kolkata).[1][2] Known for his research on High energy colliders, Higgs bosons, neutrinos,[3] Mukhopadhyaya is an elected fellow of the National Academy of Sciences, India.[4] The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, for his contributions to physical sciences in 2003.[5][note 1]

Biography

Mukhopadhyaya, who secured his PhD from the Rajabazar Science College campus of Calcutta University, has done reportedly notable work on neutrino mass[6] and is known to have been successful in theorizing that gauge boson fusion as the dominant mode of supersymmetric particle production.[7] He has delivered invited lectures at a number of conferences[8] and was a member of the national organizing committees of the International Conference on particles, Strings and Cosmology (PASCOS), held in Mumbai in 2003[9] as well as the XXI DAE-BRNS High Energy Physics Symposium held in 2014.[10] His studies have been documented by way of a number of articles[note 2] and ResearchGate , an online article repository of scientific articles, has listed 184 of them.[11] He has also edited one book, Physics at the Large Hadron Collider, along with Amitava Datta and Amitava Raychaudhuri[12] and has contributed chapters to books edited by others.[13]

Selected bibliography

Books

  • Amitava Datta; B. Mukhopadhyaya; A. Raychaudhuri (30 May 2010). Physics at the Large Hadron Collider. Springer Science & Business Media. ISBN 978-81-8489-295-6.

Chapters

  • Rathin Adikari; Biswarup Mukhopadhyaya (30 November 1996). "Some Signals for a Light Neutralino". In K E Lassila; J Qiu; A Sommerer; G Valencia; K Whisnant; B-L Young (eds.). Particle Theory and Phenomenology: Proceedings of XVII International Kazimierz Meeting on Particle Physics and of the Madison Phenomenology Symposium. World Scientific. pp. 255–. ISBN 978-981-4547-00-0.

Articles

  • Biswarup Mukhopadhyaya (2003). "Supersymmetry and neutrino mass". p. 18. arXiv:hep-ph/0301278.
  • Nabarun Chakrabarty; Dilip Kumar Ghosh; Biswarup Mukhopadhyaya; Ipsita Saha (2015). "Dark matter, neutrino masses and high scale validity of an inert Higgs doublet model". Phys. Rev. D. 92 (1): 015002. arXiv:1501.03700. Bibcode:2015PhRvD..92a5002C. doi:10.1103/PhysRevD.92.015002. S2CID 118836453.
  • Siddharth Dwivedi; Dilip Kumar Ghosh; Biswarup Mukhopadhyaya; Ambresh Shivaji (2015). "Constraints on CP-violating gauge-Higgs operators". Phys. Rev. D. 92 (9): 095015. arXiv:1505.05844. Bibcode:2015PhRvD..92i5015D. doi:10.1103/PhysRevD.92.095015. S2CID 119233910.
  • Nabarun Chakrabarty; Biswarup Mukhopadhyaya; Soumitra SenGupta (2017). "Diphoton signal via Chern-Simons interaction in a warped geometry scenario". Phys. Rev. D. 95 (1): 015007. arXiv:1604.00885. Bibcode:2017PhRvD..95a5007C. doi:10.1103/PhysRevD.95.015007. S2CID 118436901.
  • Nabarun Chakrabarty; Biswarup Mukhopadhyaya (2017). "High-scale validity of a two Higgs doublet scenario: predicting collider signals". Phys. Rev. D. 96 (3): 035028. arXiv:1702.08268. Bibcode:2017PhRvD..96c5028C. doi:10.1103/PhysRevD.96.035028. S2CID 118855115.

See also

  • flagIndia portal
  • iconPhysics portal

Notes

  1. ^ Long link - please select award year to see details
  2. ^ Please see Selected bibliography section

References

  1. ^ "Designation: Professor I". Harish-Chandra Research Institute. 22 October 2017. Retrieved 22 October 2017.
  2. ^ "Discovery of Higgs Boson: Reality and Myth". IIT Indore. 22 October 2017. Archived from the original on 22 October 2017. Retrieved 22 October 2017.
  3. ^ "Biswarup Mukhopadhyaya on HBNI". Homi Bhabha National Institute. 22 October 2017. Archived from the original on 16 November 2020. Retrieved 22 October 2017.
  4. ^ "NASI fellows". National Academy of Sciences, India. 2017.
  5. ^ "View Bhatnagar Awardees". Shanti Swarup Bhatnagar Prize. 11 November 2017. Retrieved 11 November 2017.
  6. ^ "Brief Profile of the Awardee". Shanti Swarup Bhatnagar Prize. 21 October 2017. Retrieved 21 October 2017.
  7. ^ "Handbook of Shanti Swarup Bhatnagar Prize Winners" (PDF). Council of Scientific and Industrial Research. 17 October 2017. Archived from the original (PDF) on 4 March 2016. Retrieved 17 October 2017.
  8. ^ "International Conference on particles, Strings and Cosmology". Harish-Chandra Research Institute. 22 October 2017. Retrieved 22 October 2017.
  9. ^ "Neutrino-Antineutrino Asymmetry around Rotating Black Hole". Tata Institute of Fundamental Research. 22 October 2017. Retrieved 22 October 2017.
  10. ^ "XXI DAE-BRNS High Energy Physics Symposium 2014". IIT Guwahati. 22 October 2017. Retrieved 22 October 2017.
  11. ^ "On ResearchGate". 17 October 2017. Retrieved 17 October 2017.
  12. ^ Amitava Datta; B. Mukhopadhyaya; A. Raychaudhuri (30 May 2010). Physics at the Large Hadron Collider. Springer Science & Business Media. ISBN 978-81-8489-295-6.
  13. ^ K E Lassila; J Qiu; A Sommerer; G Valencia; K Whisnant; B-L Young (30 November 1996). Particle Theory and Phenomenology: Proceedings of XVII International Kazimierz Meeting on Particle Physics and of the Madison Phenomenology Symposium. World Scientific. pp. 255–. ISBN 978-981-4547-00-0.

External links

  • "List of Publications". Cornell University Library. 22 October 2017. Retrieved 22 October 2017.
  • v
  • t
  • e
1950s1960s1970s
1980s
1990s
2000s
2010s2020s