Boracite

(repeating unit)Mg3B7O13ClIMA symbolBoc[1]Strunz classification6.GA.05Dana classification25.06.01.01Crystal systemOrthorhombicCrystal classPyramidal (mm2)
(same H-M symbol)Space groupPca21Unit cella = 8.577(6) Å,
b = 8.553(8) Å,
c = 12.09(1) Å; Z = 4IdentificationFormula mass392.03 g/molColorColorless, white, gray, brown, orange, yellow, pale green, dark green, blue-green, or blue; colorless in transmitted lightCrystal habitCrystalline, disseminated (pseudocubic)TwinningRarely as penetration twinsCleavageNoneFractureIrregular/uneven, conchoidalTenacityBrittleMohs scale hardness7 - 7.5LusterVitreous - adamantineStreakWhiteDiaphaneitySubtransparent to translucentSpecific gravity2.95Density2.91 - 3.10Optical propertiesBiaxial (+)Refractive indexnα=1.658 - 1.662,
nβ=1.662 - 1.667,
nγ=1.668 - 1.673Birefringenceδ = 0.010–0.011PleochroismNone2V angle82°Dispersion0.024 (weak)Ultraviolet fluorescenceNoneSolubilityVery slowly soluble in H2O; Slowly but completely soluble in HClReferences[2][3][4][5]

Boracite is a magnesium borate mineral with formula: Mg3B7O13Cl. It occurs as blue green, colorless, gray, yellow to white crystals in the orthorhombic - pyramidal crystal system. Boracite also shows pseudo-isometric cubical and octahedral forms. These are thought to be the result of transition from an unstable high temperature isometric form on cooling. Penetration twins are not unusual. It occurs as well formed crystals and dispersed grains often embedded within gypsum and anhydrite crystals. It has a Mohs hardness of 7 to 7.5 and a specific gravity of 2.9. Refractive index values are nα = 1.658 - 1.662, nβ = 1.662 - 1.667 and nγ = 1.668 - 1.673. It has a conchoidal fracture and does not show cleavage. It is insoluble in water (not to be confused with borax, which is soluble in water).

Boracite is typically found in evaporite sequences associated with gypsum, anhydrite, halite, sylvite, carnallite, kainite and hilgardite. It was first described in 1789 for specimens from its type locality of Kalkberg hill, Lüneburg, Lower Saxony, Germany. It is also found near Sussex, New Brunswick.[6]

The name is derived from its boron content (19 to 20% boron by mass).

See also

  • Earth sciences portal

References

  1. ^ Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
  2. ^ "Boracite Mineral Data". Webmineral.com. Retrieved 2011-10-27.
  3. ^ "Boracite Gems". ClassicGems.net. Retrieved 2011-10-27.
  4. ^ "Boracite mineral information and data". Mindat.org. Retrieved 2011-10-27.
  5. ^ "Boracite" (PDF). Mineral Data Publishing. Retrieved 2011-10-27.
  6. ^ "Phase transitions in the series boracite-trembathite-congolite; an infrared spectroscopic study" Peter C. Burns ; Michael A. Carpenter. The Canadian Mineralogist (1997) 35 (1): 189–202
  • Palache, C., H. Berman, and C. Frondel (1951) Dana’s system of mineralogy, 7th edition, v. II, pp.378–381.

External links

  • Media related to Boracite at Wikimedia Commons


  • v
  • t
  • e