Bornivorous set

A set that can absorb any bounded subset

In functional analysis, a subset of a real or complex vector space X {\displaystyle X} that has an associated vector bornology B {\displaystyle {\mathcal {B}}} is called bornivorous and a bornivore if it absorbs every element of B . {\displaystyle {\mathcal {B}}.} If X {\displaystyle X} is a topological vector space (TVS) then a subset S {\displaystyle S} of X {\displaystyle X} is bornivorous if it is bornivorous with respect to the von-Neumann bornology of X {\displaystyle X} .

Bornivorous sets play an important role in the definitions of many classes of topological vector spaces, particularly bornological spaces.

Definitions

If X {\displaystyle X} is a TVS then a subset S {\displaystyle S} of X {\displaystyle X} is called bornivorous[1] and a bornivore if S {\displaystyle S} absorbs every bounded subset of X . {\displaystyle X.}

An absorbing disk in a locally convex space is bornivorous if and only if its Minkowski functional is locally bounded (i.e. maps bounded sets to bounded sets).[1]

Infrabornivorous sets and infrabounded maps

A linear map between two TVSs is called infrabounded if it maps Banach disks to bounded disks.[2]

A disk in X {\displaystyle X} is called infrabornivorous if it absorbs every Banach disk.[3]

An absorbing disk in a locally convex space is infrabornivorous if and only if its Minkowski functional is infrabounded.[1] A disk in a Hausdorff locally convex space is infrabornivorous if and only if it absorbs all compact disks (that is, if it is "compactivorous").[1]

Properties

Every bornivorous and infrabornivorous subset of a TVS is absorbing. In a pseudometrizable TVS, every bornivore is a neighborhood of the origin.[4]

Two TVS topologies on the same vector space have that same bounded subsets if and only if they have the same bornivores.[5]

Suppose M {\displaystyle M} is a vector subspace of finite codimension in a locally convex space X {\displaystyle X} and B M . {\displaystyle B\subseteq M.} If B {\displaystyle B} is a barrel (resp. bornivorous barrel, bornivorous disk) in M {\displaystyle M} then there exists a barrel (resp. bornivorous barrel, bornivorous disk) C {\displaystyle C} in X {\displaystyle X} such that B = C M . {\displaystyle B=C\cap M.} [6]

Examples and sufficient conditions

Every neighborhood of the origin in a TVS is bornivorous. The convex hull, closed convex hull, and balanced hull of a bornivorous set is again bornivorous. The preimage of a bornivore under a bounded linear map is a bornivore.[7]

If X {\displaystyle X} is a TVS in which every bounded subset is contained in a finite dimensional vector subspace, then every absorbing set is a bornivore.[5]

Counter-examples

Let X {\displaystyle X} be R 2 {\displaystyle \mathbb {R} ^{2}} as a vector space over the reals. If S {\displaystyle S} is the balanced hull of the closed line segment between ( 1 , 1 ) {\displaystyle (-1,1)} and ( 1 , 1 ) {\displaystyle (1,1)} then S {\displaystyle S} is not bornivorous but the convex hull of S {\displaystyle S} is bornivorous. If T {\displaystyle T} is the closed and "filled" triangle with vertices ( 1 , 1 ) , ( 1 , 1 ) , {\displaystyle (-1,-1),(-1,1),} and ( 1 , 1 ) {\displaystyle (1,1)} then T {\displaystyle T} is a convex set that is not bornivorous but its balanced hull is bornivorous.

See also

References

  1. ^ a b c d Narici & Beckenstein 2011, pp. 441–457.
  2. ^ Narici & Beckenstein 2011, p. 442.
  3. ^ Narici & Beckenstein 2011, p. 443.
  4. ^ Narici & Beckenstein 2011, pp. 172–173.
  5. ^ a b Wilansky 2013, p. 50.
  6. ^ Narici & Beckenstein 2011, pp. 371–423.
  7. ^ Wilansky 2013, p. 48.

Bibliography

  • Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978). Topological Vector Spaces: The Theory Without Convexity Conditions. Lecture Notes in Mathematics. Vol. 639. Berlin New York: Springer-Verlag. ISBN 978-3-540-08662-8. OCLC 297140003.
  • Berberian, Sterling K. (1974). Lectures in Functional Analysis and Operator Theory. Graduate Texts in Mathematics. Vol. 15. New York: Springer. ISBN 978-0-387-90081-0. OCLC 878109401.
  • Bourbaki, Nicolas (1987) [1981]. Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. ISBN 3-540-13627-4. OCLC 17499190.
  • Conway, John B. (1990). A Course in Functional Analysis. Graduate Texts in Mathematics. Vol. 96 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-97245-9. OCLC 21195908.
  • Edwards, Robert E. (1995). Functional Analysis: Theory and Applications. New York: Dover Publications. ISBN 978-0-486-68143-6. OCLC 30593138.
  • Grothendieck, Alexander (1973). Topological Vector Spaces. Translated by Chaljub, Orlando. New York: Gordon and Breach Science Publishers. ISBN 978-0-677-30020-7. OCLC 886098.
  • Hogbe-Nlend, Henri (1977). Bornologies and Functional Analysis: Introductory Course on the Theory of Duality Topology-Bornology and its use in Functional Analysis. North-Holland Mathematics Studies. Vol. 26. Amsterdam New York New York: North Holland. ISBN 978-0-08-087137-0. MR 0500064. OCLC 316549583.
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
  • Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. MR 0248498. OCLC 840293704.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Kriegl, Andreas; Michor, Peter W. (1997). The Convenient Setting of Global Analysis (PDF). Mathematical Surveys and Monographs. Vol. 53. Providence, R.I: American Mathematical Society. ISBN 978-0-8218-0780-4. OCLC 37141279.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
  • v
  • t
  • e
Spaces
Properties
TheoremsOperatorsAlgebrasOpen problemsApplicationsAdvanced topics
  • Category
  • v
  • t
  • e
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
  • Category