Box orbit

Type of gravitational orbit seen in triaxial systems

In stellar dynamics, a box orbit refers to a particular type of orbit that can be seen in triaxial systems, i.e. systems that do not possess a symmetry around any of its axes. They contrast with the loop orbits that are observed in spherically symmetric or axisymmetric systems.

In a box orbit, a star oscillates independently[citation needed] along the three different axes as it moves through the system. As a result of this motion, it fills in a (roughly) box-shaped region of space. Unlike loop orbits, the stars on box orbits can come arbitrarily close to the center of the system. As a special case, if the frequencies of oscillation in different directions are commensurate, the orbit will lie on a one- or two-dimensional manifold and can avoid the center.[1] Such orbits are sometimes called "boxlets".

Examples of box orbits (in 2 dimensions)
Beginning of a box orbit Many cycles of a box orbit A closed box orbit
Beginning of a box orbit Many cycles of a box orbit A closed box orbit

References

  1. ^ Merritt, D.; Valluri, M. (September 1999), "Resonant Orbits in Triaxial Galaxies", The Astronomical Journal, 118 (3): 1177–1189, arXiv:astro-ph/9903452, Bibcode:1999AJ....118.1177M, doi:10.1086/301012, S2CID 14621588

See also

  • Horseshoe orbit
  • Lissajous curve
  • List of orbits
  • v
  • t
  • e
Gravitational orbits
Types
General
Geocentric
About
other points
Parameters
  • Shape
  • Size
Orientation
Position
Variation
ManeuversOrbital
mechanics