Classification of low-dimensional real Lie algebras

(Learn how and when to remove this template message)

This mathematics-related list provides Mubarakzyanov's classification of low-dimensional real Lie algebras, published in Russian in 1963.[1] It complements the article on Lie algebra in the area of abstract algebra.

An English version and review of this classification was published by Popovych et al.[2] in 2003.

Mubarakzyanov's Classification

Let g n {\displaystyle {\mathfrak {g}}_{n}} be n {\displaystyle n} -dimensional Lie algebra over the field of real numbers with generators e 1 , , e n {\displaystyle e_{1},\dots ,e_{n}} , n 4 {\displaystyle n\leq 4} .[clarification needed] For each algebra g {\displaystyle {\mathfrak {g}}} we adduce only non-zero commutators between basis elements.

One-dimensional

Two-dimensional

[ e 1 , e 2 ] = e 1 . {\displaystyle [e_{1},e_{2}]=e_{1}.}

Three-dimensional

[ e 2 , e 3 ] = e 1 ; {\displaystyle [e_{2},e_{3}]=e_{1};}
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = e 1 + e 2 ; {\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=e_{1}+e_{2};}
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = e 2 ; {\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=e_{2};}
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = α e 2 , 1 α < 1 , α 0 ; {\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=\alpha e_{2},\quad -1\leq \alpha <1,\quad \alpha \neq 0;}
[ e 1 , e 3 ] = β e 1 e 2 , [ e 2 , e 3 ] = e 1 + β e 2 , β 0 ; {\displaystyle [e_{1},e_{3}]=\beta e_{1}-e_{2},\quad [e_{2},e_{3}]=e_{1}+\beta e_{2},\quad \beta \geq 0;}
[ e 1 , e 2 ] = e 1 , [ e 2 , e 3 ] = e 3 , [ e 1 , e 3 ] = 2 e 2 ; {\displaystyle [e_{1},e_{2}]=e_{1},\quad [e_{2},e_{3}]=e_{3},\quad [e_{1},e_{3}]=2e_{2};}
[ e 2 , e 3 ] = e 1 , [ e 3 , e 1 ] = e 2 , [ e 1 , e 2 ] = e 3 . {\displaystyle [e_{2},e_{3}]=e_{1},\quad [e_{3},e_{1}]=e_{2},\quad [e_{1},e_{2}]=e_{3}.}

Algebra g 3.3 {\displaystyle {\mathfrak {g}}_{3.3}} can be considered as an extreme case of g 3.5 {\displaystyle {\mathfrak {g}}_{3.5}} , when β {\displaystyle \beta \rightarrow \infty } , forming contraction of Lie algebra.

Over the field C {\displaystyle {\mathbb {C} }} algebras g 3.5 {\displaystyle {\mathfrak {g}}_{3.5}} , g 3.7 {\displaystyle {\mathfrak {g}}_{3.7}} are isomorphic to g 3.4 {\displaystyle {\mathfrak {g}}_{3.4}} and g 3.6 {\displaystyle {\mathfrak {g}}_{3.6}} , respectively.

Four-dimensional

[ e 1 , e 2 ] = e 1 ; {\displaystyle [e_{1},e_{2}]=e_{1};}
[ e 1 , e 2 ] = e 1 [ e 3 , e 4 ] = e 3 ; {\displaystyle [e_{1},e_{2}]=e_{1}\quad [e_{3},e_{4}]=e_{3};}
[ e 2 , e 3 ] = e 1 ; {\displaystyle [e_{2},e_{3}]=e_{1};}
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = e 1 + e 2 ; {\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=e_{1}+e_{2};}
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = e 2 ; {\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=e_{2};}
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = α e 2 , 1 α < 1 , α 0 ; {\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=\alpha e_{2},\quad -1\leq \alpha <1,\quad \alpha \neq 0;}
[ e 1 , e 3 ] = β e 1 e 2 [ e 2 , e 3 ] = e 1 + β e 2 , β 0 ; {\displaystyle [e_{1},e_{3}]=\beta e_{1}-e_{2}\quad [e_{2},e_{3}]=e_{1}+\beta e_{2},\quad \beta \geq 0;}
[ e 1 , e 2 ] = e 1 , [ e 2 , e 3 ] = e 3 , [ e 1 , e 3 ] = 2 e 2 ; {\displaystyle [e_{1},e_{2}]=e_{1},\quad [e_{2},e_{3}]=e_{3},\quad [e_{1},e_{3}]=2e_{2};}
[ e 1 , e 2 ] = e 3 , [ e 2 , e 3 ] = e 1 , [ e 3 , e 1 ] = e 2 ; {\displaystyle [e_{1},e_{2}]=e_{3},\quad [e_{2},e_{3}]=e_{1},\quad [e_{3},e_{1}]=e_{2};}
[ e 2 , e 4 ] = e 1 , [ e 3 , e 4 ] = e 2 ; {\displaystyle [e_{2},e_{4}]=e_{1},\quad [e_{3},e_{4}]=e_{2};}
[ e 1 , e 4 ] = β e 1 , [ e 2 , e 4 ] = e 2 , [ e 3 , e 4 ] = e 2 + e 3 , β 0 ; {\displaystyle [e_{1},e_{4}]=\beta e_{1},\quad [e_{2},e_{4}]=e_{2},\quad [e_{3},e_{4}]=e_{2}+e_{3},\quad \beta \neq 0;}
[ e 1 , e 4 ] = e 1 , [ e 3 , e 4 ] = e 2 ; {\displaystyle [e_{1},e_{4}]=e_{1},\quad [e_{3},e_{4}]=e_{2};}
[ e 1 , e 4 ] = e 1 , [ e 2 , e 4 ] = e 1 + e 2 , [ e 3 , e 4 ] = e 2 + e 3 ; {\displaystyle [e_{1},e_{4}]=e_{1},\quad [e_{2},e_{4}]=e_{1}+e_{2},\quad [e_{3},e_{4}]=e_{2}+e_{3};}
[ e 1 , e 4 ] = α e 1 , [ e 2 , e 4 ] = β e 2 , [ e 3 , e 4 ] = γ e 3 , α β γ 0 ; {\displaystyle [e_{1},e_{4}]=\alpha e_{1},\quad [e_{2},e_{4}]=\beta e_{2},\quad [e_{3},e_{4}]=\gamma e_{3},\quad \alpha \beta \gamma \neq 0;}
[ e 1 , e 4 ] = α e 1 , [ e 2 , e 4 ] = β e 2 e 3 , [ e 3 , e 4 ] = e 2 + β e 3 , α > 0 ; {\displaystyle [e_{1},e_{4}]=\alpha e_{1},\quad [e_{2},e_{4}]=\beta e_{2}-e_{3},\quad [e_{3},e_{4}]=e_{2}+\beta e_{3},\quad \alpha >0;}
[ e 2 , e 3 ] = e 1 , [ e 1 , e 4 ] = 2 e 1 , [ e 2 , e 4 ] = e 2 , [ e 3 , e 4 ] = e 2 + e 3 ; {\displaystyle [e_{2},e_{3}]=e_{1},\quad [e_{1},e_{4}]=2e_{1},\quad [e_{2},e_{4}]=e_{2},\quad [e_{3},e_{4}]=e_{2}+e_{3};}
[ e 2 , e 3 ] = e 1 , [ e 1 , e 4 ] = ( 1 + β ) e 1 , [ e 2 , e 4 ] = e 2 , [ e 3 , e 4 ] = β e 3 , 1 β 1 ; {\displaystyle [e_{2},e_{3}]=e_{1},\quad [e_{1},e_{4}]=(1+\beta )e_{1},\quad [e_{2},e_{4}]=e_{2},\quad [e_{3},e_{4}]=\beta e_{3},\quad -1\leq \beta \leq 1;}
[ e 2 , e 3 ] = e 1 , [ e 1 , e 4 ] = 2 α e 1 , [ e 2 , e 4 ] = α e 2 e 3 , [ e 3 , e 4 ] = e 2 + α e 3 , α 0 ; {\displaystyle [e_{2},e_{3}]=e_{1},\quad [e_{1},e_{4}]=2\alpha e_{1},\quad [e_{2},e_{4}]=\alpha e_{2}-e_{3},\quad [e_{3},e_{4}]=e_{2}+\alpha e_{3},\quad \alpha \geq 0;}
[ e 1 , e 3 ] = e 1 , [ e 2 , e 3 ] = e 2 , [ e 1 , e 4 ] = e 2 , [ e 2 , e 4 ] = e 1 . {\displaystyle [e_{1},e_{3}]=e_{1},\quad [e_{2},e_{3}]=e_{2},\quad [e_{1},e_{4}]=-e_{2},\quad [e_{2},e_{4}]=e_{1}.}

Algebra g 4.3 {\displaystyle {\mathfrak {g}}_{4.3}} can be considered as an extreme case of g 4.2 {\displaystyle {\mathfrak {g}}_{4.2}} , when β 0 {\displaystyle \beta \rightarrow 0} , forming contraction of Lie algebra.

Over the field C {\displaystyle {\mathbb {C} }} algebras g 3.5 g 1 {\displaystyle {\mathfrak {g}}_{3.5}\oplus {\mathfrak {g}}_{1}} , g 3.7 g 1 {\displaystyle {\mathfrak {g}}_{3.7}\oplus {\mathfrak {g}}_{1}} , g 4.6 {\displaystyle {\mathfrak {g}}_{4.6}} , g 4.9 {\displaystyle {\mathfrak {g}}_{4.9}} , g 4.10 {\displaystyle {\mathfrak {g}}_{4.10}} are isomorphic to g 3.4 g 1 {\displaystyle {\mathfrak {g}}_{3.4}\oplus {\mathfrak {g}}_{1}} , g 3.6 g 1 {\displaystyle {\mathfrak {g}}_{3.6}\oplus {\mathfrak {g}}_{1}} , g 4.5 {\displaystyle {\mathfrak {g}}_{4.5}} , g 4.8 {\displaystyle {\mathfrak {g}}_{4.8}} , 2 g 2.1 {\displaystyle {2{\mathfrak {g}}}_{2.1}} , respectively.

See also

Notes

  1. ^ Mubarakzyanov 1963
  2. ^ Popovych 2003

References