DMMDA

Psychedelic drug
Identifiers
  • 1-(4,7-Dimethoxy-1,3-benzodioxol-5-yl)propan-2-amine
CAS Number
  • 15183-13-8 checkY
ChemSpider
  • 21106291 checkY
UNII
  • Y6T4R5Z3VU
ChEMBL
  • ChEMBL126311 checkY
CompTox Dashboard (EPA)
  • DTXSID40658367 Edit this at Wikidata
Chemical and physical dataFormulaC12H19NO4Molar mass241.287 g·mol−13D model (JSmol)
  • Interactive image
  • CC(N)Cc1cc(OC)c2OCOc2c1OC
InChI
  • InChI=1S/C12H17NO4/c1-7(13)4-8-5-9(14-2)11-12(10(8)15-3)17-6-16-11/h5,7H,4,6,13H2,1-3H3 checkY
  • Key:GRGRGLVMGTVCNZ-UHFFFAOYSA-N checkY
  (verify)

2,5-Dimethoxy-3,4-methylenedioxyamphetamine (DMMDA) is a psychedelic drug of the phenethylamine and amphetamine chemical classes.[1] It was first synthesized by Alexander Shulgin and was described in his book PiHKAL.[1] Shulgin listed the dosage as 30–75 mg and the duration as 6–8 hours.[1] He reported DMMDA as producing LSD-like images, mydriasis, ataxia, and time dilation.[1]

Pharmacology

The mechanism behind DMMDA's hallucinogenic effects has not been specifically established, however Shulgin describes that a 75 milligram dose of DMMDA is equivalent to a 75–100 microgram dose of LSD. LSD is a known 5-HT2A partial agonist.[1]

Chemistry

Shulgin explains in his book that DMMDA has 6 isomers similar to TMA.[1] DMMDA-2 is the only other isomer that has been synthesized as of yet. DMMDA-3 could be made from exalatacin (1-allyl-2,6-dimethoxy-3,4-methylenedioxybenzene). Exalatacin can be found in the essential oil of both Crowea exalata and Crowea angustifolia var. angustifolia.[2] In other words, exalatacin is an isomer of both apiole and dillapiole, which can be used to make DMMDA and DMMDA-2 respectively. Exalatacin is almost identical to apiole and dillapiole, but differs from them in its positioning of its methoxy groups, which are in the 2 and 6 positions.[2] Additionally, yet another isomer of DMMDA could be made from pseudo-dillapiole or 4,5-dimethoxy-2,3-methylenedioxyallylbenzene.[3]

Precursors in the synthesis of DMMDA and analogs

Synthesis

Shulgin describes the synthesis of DMMDA from apiole in his book PiHKAL.[1] Apiole is subjected to an isomerization reaction to yield isoapiole by adding to solution of ethanolic potassium hydroxide and holding the solution at a steam bath.[1] The isoapiole is then nitrated to 2-nitro-isoapiole or 1-(2,3-dimethoxy-3,4-methylenedioxyphenyl)-2-nitropropene by adding it to a stirred solution of acetone and pyridine at ice-bath temperatures and treating the solution with tetranitromethane. The pyridine acts as a catalyst in this reaction.[1] The 2-nitro-isoapiole is finally reduced to freebase DMMDA by adding it to a well-stirred and refluxing suspension of diethylether and lithium aluminium hydride under an inert atmosphere (e.g. helium).[1] Finally, the freebase DMMDA converted into its hydrochloride salt.[1]

  • Alexander Shulgin's synthesis of DMMDA.
    Alexander Shulgin's synthesis of DMMDA.

Shulgin's synthesis of DMMDA is reasonably unsafe, since it involves the use of tetranitromethane, which is toxic, carcinogenic and prone to detonating.[4] DMMDA can be made from apiole via other safer methods. Among other methods, DMMDA can be synthesize from apiole via the intermediate chemical 2,5-dimethoxy-3,4-methylenedioxyphenylpropan-2-one or DMMDP2P in the same manner as MDA is made from safrole. DMMDP2P can be made from apiole via a Wacker oxidation with benzoquinone. DMMDP2P can be alternatively made by subjecting apiole to an isomerisation reaction to yield isoapiole followed by a Peracid oxidation and finally a hydrolytic dehydration.[5] The Peracid oxidation can be accomplished by combining hydrogen peroxide with formic acid to create a peracid. The hydrolysis is usually acid-catalyzed with sulphuric acid because sulphuric acid will also result in the intermediary isoapiole monoformyl glycol being dehydrated to DMMDP2P. Then the DMMDP2P can then be subjected to a reductive amination with a source of nitrogen, such as ammonium chloride, and a reducing agent, such as sodium cyanoborohydride or an amalgam of mercury and aluminium, to yield freebase DMMDA.[6]

References

  1. ^ a b c d e f g h i j k Shulgin A, Shulgin A (1991). Pihkal: A Chemical Love Story. Transform Press. ISBN 0-9630096-0-5.
  2. ^ a b Brophy JJ, Goldsack RJ, Punruckvong A, Forster PI, Fookes CJ (July 1997). "Essential oils of the genus Crowea (Rutaceae)". Journal of Essential Oil Research. 9 (4): 401–409. doi:10.1080/10412905.1997.9700740.
  3. ^ US patent 4,876,277, Burke BA, Nair MG, "Antimicrobial/antifungal compositions", issued 1989-10-24, assigned to Plant Cell Research Institute, Inc., Dublin, Calif. 
  4. ^ National Toxicology Program (2011). "Tetranitromethane" (PDF). Report On Carcinogens (12th ed.). National Toxicology Program. Archived (PDF) from the original on 2013-01-31. Retrieved 2012-08-14.
  5. ^ Cox M, Klass G, Morey S, Pigou P (July 2008). "Chemical markers from the peracid oxidation of isosafrole". Forensic Science International. 179 (1): 44–53. doi:10.1016/j.forsciint.2008.04.009. PMID 18508215.
  6. ^ Braun U, Shulgin AT, Braun G (February 1980). "Centrally active N-substituted analogs of 3,4-methylenedioxyphenylisopropylamine (3,4-methylenedioxyamphetamine)". Journal of Pharmaceutical Sciences. 69 (2): 192–195. doi:10.1002/jps.2600690220. PMID 6102141.
  • v
  • t
  • e
Psychedelics
(5-HT2A
agonists)
Benzofurans
Lyserg‐
amides
Phenethyl‐
amines
2C-x
25x-NBx
25x-NB
25x-NB3OMe
  • 25B-NB3OMe
  • 25C-NB3OMe
  • 25D-NB3OMe
  • 25E-NB3OMe
  • 25H-NB3OMe
  • 25I-NB3OMe
  • 25N-NB3OMe
  • 25P-NB3OMe
  • 25T2-NB3OMe
  • 25T4-NB3OMe
  • 25T7-NB3OMe
  • 25TFM-NB3OMe
25x-NB4OMe
  • 25B-NB4OMe
  • 25C-NB4OMe
  • 25D-NB4OMe
  • 25E-NB4OMe
  • 25H-NB4OMe
  • 25I-NB4OMe
  • 25N-NB4OMe
  • 25P-NB4OMe
  • 25T2-NB4OMe
  • 25T4-NB4OMe
  • 25T7-NB4OMe
  • 25TFM-NB4OMe
25x-NBF
25x-NBMD
  • 25B-NBMD
  • 25C-NBMD
  • 25D-NBMD
  • 25E-NBMD
  • 25F-NBMD
  • 25H-NBMD
  • 25I-NBMD
  • 25P-NBMD
  • 25T2-NBMD
  • 25T7-NBMD
  • 25TFM-NBMD
25x-NBOH
25x-NBOMe
Atypical structures
25x-NMx
  • 25B-NMe7BF
  • 25B-NMe7BT
  • 25B-NMe7Bim
  • 25B-NMe7Box
  • 25B-NMe7DHBF
  • 25B-NMe7Ind
  • 25B-NMe7Indz
  • 25B-NMePyr
  • 25I-NMe7DHBF
  • 25I-NMeFur
  • 25I-NMeTHF
  • 25I-NMeTh
N-(2C)-fentanyl
  • N-(2C-B) fentanyl
  • N-(2C-C) fentanyl
  • N-(2C-D) fentanyl
  • N-(2C-E) fentanyl
  • N-(2C-G) fentanyl
  • N-(2C-H) fentanyl
  • N-(2C-I) fentanyl
  • N-(2C-IP) fentanyl
  • N-(2C-N) fentanyl
  • N-(2C-P) fentanyl
  • N-(2C-T) fentanyl
  • N-(2C-T-2) fentanyl
  • N-(2C-T-4) fentanyl
  • N-(2C-T-7) fentanyl
  • N-(2C-TFM) fentanyl
3C-x
4C-x
DOx
HOT-x
MDxx
Mescaline (subst.)
TMAs
  • TMA
  • TMA-2
  • TMA-3
  • TMA-4
  • TMA-5
  • TMA-6
Others
Piperazines
Tryptamines
alpha-alkyltryptamines
x-DALT
x-DET
x-DiPT
x-DMT
x-DPT
Ibogaine-related
x-MET
x-MiPT
Others
Others
Dissociatives
(NMDAR
antagonists)
Arylcyclo‐
hexylamines
Ketamine-related
PCP-related
Others
Adamantanes
Diarylethylamines
Morphinans
Others
Deliriants
(mAChR
antagonists)
Others
Cannabinoids
(CB1 agonists)
Natural
Synthetic
AM-x
CP x
HU-x
JWH-x
Misc. designer cannabinoids
D2 agonists
GABAA
enhancers
Inhalants
(Mixed MOA)
κOR agonists
Oneirogens
Others
  • v
  • t
  • e
Phenylalkyl-
amines
(other than
cathinones)
Cyclized phenyl-
alkylamines
Cathinones
Tryptamines
Chemical classes
  • v
  • t
  • e
Phenethylamines


Stimulants: Phenylethanolamine

Amphetamines
Phentermines
Cathinones
Phenylisobutylamines
Phenylalkylpyrrolidines
Catecholamines
(and close relatives)
Miscellaneous
  • v
  • t
  • e
5-HT1
5-HT1A
5-HT1B
5-HT1D
5-HT1E
5-HT1F
5-HT2
5-HT2A
5-HT2B
5-HT2C
5-HT37
5-HT3
5-HT4
5-HT5A
5-HT6
5-HT7
  • See also: Receptor/signaling modulators
  • Adrenergics
  • Dopaminergics
  • Melatonergics
  • Monoamine reuptake inhibitors and releasing agents
  • Monoamine metabolism modulators
  • Monoamine neurotoxins