Exact differential equation

Type of differential equation subject to a particular solution methodology
Differential equations
Scope
Fields
  • Natural sciences
  • Engineering
  • Astronomy
  • Physics
  • Chemistry

  • Biology
  • Geology
Applied mathematics
  • Continuum mechanics
  • Chaos theory
  • Dynamical systems
Social sciences
  • Economics
  • Population dynamics

List of named differential equations
Classification
Types
By variable type
Features
Relation to processes
  • Difference (discrete analogue)
Solution
People
  • v
  • t
  • e

In mathematics, an exact differential equation or total differential equation is a certain kind of ordinary differential equation which is widely used in physics and engineering.

Definition

Given a simply connected and open subset D of R 2 {\displaystyle \mathbb {R} ^{2}} and two functions I and J which are continuous on D, an implicit first-order ordinary differential equation of the form

I ( x , y ) d x + J ( x , y ) d y = 0 , {\displaystyle I(x,y)\,dx+J(x,y)\,dy=0,}

is called an exact differential equation if there exists a continuously differentiable function F, called the potential function,[1][2] so that

F x = I {\displaystyle {\frac {\partial F}{\partial x}}=I}

and

F y = J . {\displaystyle {\frac {\partial F}{\partial y}}=J.}

An exact equation may also be presented in the following form:

I ( x , y ) + J ( x , y ) y ( x ) = 0 {\displaystyle I(x,y)+J(x,y)\,y'(x)=0}

where the same constraints on I and J apply for the differential equation to be exact.

The nomenclature of "exact differential equation" refers to the exact differential of a function. For a function F ( x 0 , x 1 , . . . , x n 1 , x n ) {\displaystyle F(x_{0},x_{1},...,x_{n-1},x_{n})} , the exact or total derivative with respect to x 0 {\displaystyle x_{0}} is given by

d F d x 0 = F x 0 + i = 1 n F x i d x i d x 0 . {\displaystyle {\frac {dF}{dx_{0}}}={\frac {\partial F}{\partial x_{0}}}+\sum _{i=1}^{n}{\frac {\partial F}{\partial x_{i}}}{\frac {dx_{i}}{dx_{0}}}.}

Example

The function F : R 2 R {\displaystyle F:\mathbb {R} ^{2}\to \mathbb {R} } given by

F ( x , y ) = 1 2 ( x 2 + y 2 ) + c {\displaystyle F(x,y)={\frac {1}{2}}(x^{2}+y^{2})+c}

is a potential function for the differential equation

x d x + y d y = 0. {\displaystyle x\,dx+y\,dy=0.\,}

First order exact differential equations

Identifying first order exact differential equations

Let the functions M {\textstyle M} , N {\textstyle N} , M y {\textstyle M_{y}} , and N x {\textstyle N_{x}} , where the subscripts denote the partial derivative with respect to the relative variable, be continuous in the region R : α < x < β , γ < y < δ {\textstyle R:\alpha <x<\beta ,\gamma <y<\delta } . Then the differential equation

M ( x , y ) + N ( x , y ) d y d x = 0 {\displaystyle M(x,y)+N(x,y){\frac {dy}{dx}}=0}

is exact if and only if

M y ( x , y ) = N x ( x , y ) {\displaystyle M_{y}(x,y)=N_{x}(x,y)}

That is, there exists a function ψ ( x , y ) {\displaystyle \psi (x,y)} , called a potential function, such that

ψ x ( x , y ) = M ( x , y )  and  ψ y ( x , y ) = N ( x , y ) {\displaystyle \psi _{x}(x,y)=M(x,y){\text{ and }}\psi _{y}(x,y)=N(x,y)}

So, in general:

M y ( x , y ) = N x ( x , y ) { ψ ( x , y ) ψ x ( x , y ) = M ( x , y ) ψ y ( x , y ) = N ( x , y ) {\displaystyle M_{y}(x,y)=N_{x}(x,y)\iff {\begin{cases}\exists \psi (x,y)\\\psi _{x}(x,y)=M(x,y)\\\psi _{y}(x,y)=N(x,y)\end{cases}}}

Proof

The proof has two parts.

First, suppose there is a function ψ ( x , y ) {\displaystyle \psi (x,y)} such that ψ x ( x , y ) = M ( x , y )  and  ψ y ( x , y ) = N ( x , y ) {\displaystyle \psi _{x}(x,y)=M(x,y){\text{ and }}\psi _{y}(x,y)=N(x,y)}

It then follows that M y ( x , y ) = ψ x y ( x , y )  and  N x ( x , y ) = ψ y x ( x , y ) {\displaystyle M_{y}(x,y)=\psi _{xy}(x,y){\text{ and }}N_{x}(x,y)=\psi _{yx}(x,y)}

Since M y {\displaystyle M_{y}} and N x {\displaystyle N_{x}} are continuous, then ψ x y {\displaystyle \psi _{xy}} and ψ y x {\displaystyle \psi _{yx}} are also continuous which guarantees their equality.

The second part of the proof involves the construction of ψ ( x , y ) {\displaystyle \psi (x,y)} and can also be used as a procedure for solving first-order exact differential equations. Suppose that M y ( x , y ) = N x ( x , y ) {\displaystyle M_{y}(x,y)=N_{x}(x,y)} and let there be a function ψ ( x , y ) {\displaystyle \psi (x,y)} for which ψ x ( x , y ) = M ( x , y )  and  ψ y ( x , y ) = N ( x , y ) {\displaystyle \psi _{x}(x,y)=M(x,y){\text{ and }}\psi _{y}(x,y)=N(x,y)}

Begin by integrating the first equation with respect to x {\displaystyle x} . In practice, it doesn't matter if you integrate the first or the second equation, so long as the integration is done with respect to the appropriate variable.

ψ x ( x , y ) = M ( x , y ) {\displaystyle {\frac {\partial \psi }{\partial x}}(x,y)=M(x,y)}
ψ ( x , y ) = M ( x , y ) d x + h ( y ) {\displaystyle \psi (x,y)=\int {M(x,y)dx}+h(y)}
ψ ( x , y ) = Q ( x , y ) + h ( y ) {\displaystyle \psi (x,y)=Q(x,y)+h(y)}

where Q ( x , y ) {\displaystyle Q(x,y)} is any differentiable function such that Q x = M {\displaystyle Q_{x}=M} . The function h ( y ) {\displaystyle h(y)} plays the role of a constant of integration, but instead of just a constant, it is function of y {\displaystyle y} , since M {\displaystyle M} is a function of both x {\displaystyle x} and y {\displaystyle y} and we are only integrating with respect to x {\displaystyle x} .

Now to show that it is always possible to find an h ( y ) {\displaystyle h(y)} such that ψ y = N {\displaystyle \psi _{y}=N} .

ψ ( x , y ) = Q ( x , y ) + h ( y ) {\displaystyle \psi (x,y)=Q(x,y)+h(y)}

Differentiate both sides with respect to y {\displaystyle y} .

ψ y ( x , y ) = Q y ( x , y ) + h ( y ) {\displaystyle {\frac {\partial \psi }{\partial y}}(x,y)={\frac {\partial Q}{\partial y}}(x,y)+h'(y)}

Set the result equal to N {\displaystyle N} and solve for h ( y ) {\displaystyle h'(y)} .

h ( y ) = N ( x , y ) Q y ( x , y ) {\displaystyle h'(y)=N(x,y)-{\frac {\partial Q}{\partial y}}(x,y)}

In order to determine h ( y ) {\displaystyle h'(y)} from this equation, the right-hand side must depend only on y {\displaystyle y} . This can be proven by showing that its derivative with respect to x {\displaystyle x} is always zero, so differentiate the right-hand side with respect to x {\displaystyle x} .

N x ( x , y ) x Q y ( x , y ) N x ( x , y ) y Q x ( x , y ) {\displaystyle {\frac {\partial N}{\partial x}}(x,y)-{\frac {\partial }{\partial x}}{\frac {\partial Q}{\partial y}}(x,y)\iff {\frac {\partial N}{\partial x}}(x,y)-{\frac {\partial }{\partial y}}{\frac {\partial Q}{\partial x}}(x,y)}

Since Q x = M {\displaystyle Q_{x}=M} ,

N x ( x , y ) M y ( x , y ) {\displaystyle {\frac {\partial N}{\partial x}}(x,y)-{\frac {\partial M}{\partial y}}(x,y)}
Now, this is zero based on our initial supposition that M y ( x , y ) = N x ( x , y ) {\displaystyle M_{y}(x,y)=N_{x}(x,y)}

Therefore,

h ( y ) = N ( x , y ) Q y ( x , y ) {\displaystyle h'(y)=N(x,y)-{\frac {\partial Q}{\partial y}}(x,y)}
h ( y ) = ( N ( x , y ) Q y ( x , y ) ) d y {\displaystyle h(y)=\int {\left(N(x,y)-{\frac {\partial Q}{\partial y}}(x,y)\right)dy}}

ψ ( x , y ) = Q ( x , y ) + ( N ( x , y ) Q y ( x , y ) ) d y + C {\displaystyle \psi (x,y)=Q(x,y)+\int {\left(N(x,y)-{\frac {\partial Q}{\partial y}}(x,y)\right)dy}+C}

And this completes the proof.

Solutions to first order exact differential equations

First order exact differential equations of the form

M ( x , y ) + N ( x , y ) d y d x = 0 {\displaystyle M(x,y)+N(x,y){\frac {dy}{dx}}=0}

can be written in terms of the potential function ψ ( x , y ) {\displaystyle \psi (x,y)}

ψ x + ψ y d y d x = 0 {\displaystyle {\frac {\partial \psi }{\partial x}}+{\frac {\partial \psi }{\partial y}}{\frac {dy}{dx}}=0}

where

{ ψ x ( x , y ) = M ( x , y ) ψ y ( x , y ) = N ( x , y ) {\displaystyle {\begin{cases}\psi _{x}(x,y)=M(x,y)\\\psi _{y}(x,y)=N(x,y)\end{cases}}}

This is equivalent to taking the exact differential of ψ ( x , y ) {\displaystyle \psi (x,y)} .

ψ x + ψ y d y d x = 0 d d x ψ ( x , y ( x ) ) = 0 {\displaystyle {\frac {\partial \psi }{\partial x}}+{\frac {\partial \psi }{\partial y}}{\frac {dy}{dx}}=0\iff {\frac {d}{dx}}\psi (x,y(x))=0}

The solutions to an exact differential equation are then given by

ψ ( x , y ( x ) ) = c {\displaystyle \psi (x,y(x))=c}

and the problem reduces to finding ψ ( x , y ) {\displaystyle \psi (x,y)} .

This can be done by integrating the two expressions M ( x , y ) d x {\displaystyle M(x,y)dx} and N ( x , y ) d y {\displaystyle N(x,y)dy} and then writing down each term in the resulting expressions only once and summing them up in order to get ψ ( x , y ) {\displaystyle \psi (x,y)} .

The reasoning behind this is the following. Since

{ ψ x ( x , y ) = M ( x , y ) ψ y ( x , y ) = N ( x , y ) {\displaystyle {\begin{cases}\psi _{x}(x,y)=M(x,y)\\\psi _{y}(x,y)=N(x,y)\end{cases}}}

it follows, by integrating both sides, that

{ ψ ( x , y ) = M ( x , y ) d x + h ( y ) = Q ( x , y ) + h ( y ) ψ ( x , y ) = N ( x , y ) d y + g ( x ) = P ( x , y ) + g ( x ) {\displaystyle {\begin{cases}\psi (x,y)=\int {M(x,y)dx}+h(y)=Q(x,y)+h(y)\\\psi (x,y)=\int {N(x,y)dy}+g(x)=P(x,y)+g(x)\end{cases}}}

Therefore,

Q ( x , y ) + h ( y ) = P ( x , y ) + g ( x ) {\displaystyle Q(x,y)+h(y)=P(x,y)+g(x)}

where Q ( x , y ) {\displaystyle Q(x,y)} and P ( x , y ) {\displaystyle P(x,y)} are differentiable functions such that Q x = M {\displaystyle Q_{x}=M} and P y = N {\displaystyle P_{y}=N} .

In order for this to be true and for both sides to result in the exact same expression, namely ψ ( x , y ) {\displaystyle \psi (x,y)} , then h ( y ) {\displaystyle h(y)} must be contained within the expression for P ( x , y ) {\displaystyle P(x,y)} because it cannot be contained within g ( x ) {\displaystyle g(x)} , since it is entirely a function of y {\displaystyle y} and not x {\displaystyle x} and is therefore not allowed to have anything to do with x {\displaystyle x} . By analogy, g ( x ) {\displaystyle g(x)} must be contained within the expression Q ( x , y ) {\displaystyle Q(x,y)} .

Ergo,

Q ( x , y ) = g ( x ) + f ( x , y )  and  P ( x , y ) = h ( y ) + d ( x , y ) {\displaystyle Q(x,y)=g(x)+f(x,y){\text{ and }}P(x,y)=h(y)+d(x,y)}

for some expressions f ( x , y ) {\displaystyle f(x,y)} and d ( x , y ) {\displaystyle d(x,y)} . Plugging in into the above equation, we find that

g ( x ) + f ( x , y ) + h ( y ) = h ( y ) + d ( x , y ) + g ( x ) f ( x , y ) = d ( x , y ) {\displaystyle g(x)+f(x,y)+h(y)=h(y)+d(x,y)+g(x)\Rightarrow f(x,y)=d(x,y)}
and so f ( x , y ) {\displaystyle f(x,y)} and d ( x , y ) {\displaystyle d(x,y)} turn out to be the same function. Therefore,
Q ( x , y ) = g ( x ) + f ( x , y )  and  P ( x , y ) = h ( y ) + f ( x , y ) {\displaystyle Q(x,y)=g(x)+f(x,y){\text{ and }}P(x,y)=h(y)+f(x,y)}

Since we already showed that

{ ψ ( x , y ) = Q ( x , y ) + h ( y ) ψ ( x , y ) = P ( x , y ) + g ( x ) {\displaystyle {\begin{cases}\psi (x,y)=Q(x,y)+h(y)\\\psi (x,y)=P(x,y)+g(x)\end{cases}}}

it follows that

ψ ( x , y ) = g ( x ) + f ( x , y ) + h ( y ) {\displaystyle \psi (x,y)=g(x)+f(x,y)+h(y)}

So, we can construct ψ ( x , y ) {\displaystyle \psi (x,y)} by doing M ( x , y ) d x {\displaystyle \int {M(x,y)dx}} and N ( x , y ) d y {\displaystyle \int {N(x,y)dy}} and then taking the common terms we find within the two resulting expressions (that would be f ( x , y ) {\displaystyle f(x,y)} ) and then adding the terms which are uniquely found in either one of them - g ( x ) {\displaystyle g(x)} and h ( y ) {\displaystyle h(y)} .

Second order exact differential equations

The concept of exact differential equations can be extended to second order equations.[3] Consider starting with the first-order exact equation:

I ( x , y ) + J ( x , y ) d y d x = 0 {\displaystyle I\left(x,y\right)+J\left(x,y\right){dy \over dx}=0}

Since both functions I ( x , y ) {\displaystyle I\left(x,y\right)} , J ( x , y ) {\displaystyle J\left(x,y\right)} are functions of two variables, implicitly differentiating the multivariate function yields

d I d x + ( d J d x ) d y d x + d 2 y d x 2 ( J ( x , y ) ) = 0 {\displaystyle {dI \over dx}+\left({dJ \over dx}\right){dy \over dx}+{d^{2}y \over dx^{2}}\left(J\left(x,y\right)\right)=0}

Expanding the total derivatives gives that

d I d x = I x + I y d y d x {\displaystyle {dI \over dx}={\partial I \over \partial x}+{\partial I \over \partial y}{dy \over dx}}

and that

d J d x = J x + J y d y d x {\displaystyle {dJ \over dx}={\partial J \over \partial x}+{\partial J \over \partial y}{dy \over dx}}

Combining the d y d x {\textstyle {dy \over dx}} terms gives

I x + d y d x ( I y + J x + J y d y d x ) + d 2 y d x 2 ( J ( x , y ) ) = 0 {\displaystyle {\partial I \over \partial x}+{dy \over dx}\left({\partial I \over \partial y}+{\partial J \over \partial x}+{\partial J \over \partial y}{dy \over dx}\right)+{d^{2}y \over dx^{2}}\left(J\left(x,y\right)\right)=0}

If the equation is exact, then J x = I y {\textstyle {\partial J \over \partial x}={\partial I \over \partial y}} . Additionally, the total derivative of J ( x , y ) {\displaystyle J\left(x,y\right)} is equal to its implicit ordinary derivative d J d x {\textstyle {dJ \over dx}} . This leads to the rewritten equation

I x + d y d x ( J x + d J d x ) + d 2 y d x 2 ( J ( x , y ) ) = 0 {\displaystyle {\partial I \over \partial x}+{dy \over dx}\left({\partial J \over \partial x}+{dJ \over dx}\right)+{d^{2}y \over dx^{2}}\left(J\left(x,y\right)\right)=0}

Now, let there be some second-order differential equation

f ( x , y ) + g ( x , y , d y d x ) d y d x + d 2 y d x 2 ( J ( x , y ) ) = 0 {\displaystyle f\left(x,y\right)+g\left(x,y,{dy \over dx}\right){dy \over dx}+{d^{2}y \over dx^{2}}\left(J\left(x,y\right)\right)=0}

If J x = I y {\displaystyle {\partial J \over \partial x}={\partial I \over \partial y}} for exact differential equations, then

( I y ) d y = ( J x ) d y {\displaystyle \int \left({\partial I \over \partial y}\right)dy=\int \left({\partial J \over \partial x}\right)dy}

and

( I y ) d y = ( J x ) d y = I ( x , y ) h ( x ) {\displaystyle \int \left({\partial I \over \partial y}\right)dy=\int \left({\partial J \over \partial x}\right)dy=I\left(x,y\right)-h\left(x\right)}

where h ( x ) {\displaystyle h\left(x\right)} is some arbitrary function only of x {\displaystyle x} that was differentiated away to zero upon taking the partial derivative of I ( x , y ) {\displaystyle I\left(x,y\right)} with respect to y {\displaystyle y} . Although the sign on h ( x ) {\displaystyle h\left(x\right)} could be positive, it is more intuitive to think of the integral's result as I ( x , y ) {\displaystyle I\left(x,y\right)} that is missing some original extra function h ( x ) {\displaystyle h\left(x\right)} that was partially differentiated to zero.

Next, if

d I d x = I x + I y d y d x {\displaystyle {dI \over dx}={\partial I \over \partial x}+{\partial I \over \partial y}{dy \over dx}}

then the term I x {\displaystyle {\partial I \over \partial x}} should be a function only of x {\displaystyle x} and y {\displaystyle y} , since partial differentiation with respect to x {\displaystyle x} will hold y {\displaystyle y} constant and not produce any derivatives of y {\displaystyle y} . In the second order equation

f ( x , y ) + g ( x , y , d y d x ) d y d x + d 2 y d x 2 ( J ( x , y ) ) = 0 {\displaystyle f\left(x,y\right)+g\left(x,y,{dy \over dx}\right){dy \over dx}+{d^{2}y \over dx^{2}}\left(J\left(x,y\right)\right)=0}

only the term f ( x , y ) {\displaystyle f\left(x,y\right)} is a term purely of x {\displaystyle x} and y {\displaystyle y} . Let I x = f ( x , y ) {\displaystyle {\partial I \over \partial x}=f\left(x,y\right)} . If I x = f ( x , y ) {\displaystyle {\partial I \over \partial x}=f\left(x,y\right)} , then

f ( x , y ) = d I d x I y d y d x {\displaystyle f\left(x,y\right)={dI \over dx}-{\partial I \over \partial y}{dy \over dx}}

Since the total derivative of I ( x , y ) {\displaystyle I\left(x,y\right)} with respect to x {\displaystyle x} is equivalent to the implicit ordinary derivative d I d x {\displaystyle {dI \over dx}} , then

f ( x , y ) + I y d y d x = d I d x = d d x ( I ( x , y ) h ( x ) ) + d h ( x ) d x {\displaystyle f\left(x,y\right)+{\partial I \over \partial y}{dy \over dx}={dI \over dx}={d \over dx}\left(I\left(x,y\right)-h\left(x\right)\right)+{dh\left(x\right) \over dx}}

So,

d h ( x ) d x = f ( x , y ) + I y d y d x d d x ( I ( x , y ) h ( x ) ) {\displaystyle {dh\left(x\right) \over dx}=f\left(x,y\right)+{\partial I \over \partial y}{dy \over dx}-{d \over dx}\left(I\left(x,y\right)-h\left(x\right)\right)}

and

h ( x ) = ( f ( x , y ) + I y d y d x d d x ( I ( x , y ) h ( x ) ) ) d x {\displaystyle h\left(x\right)=\int \left(f\left(x,y\right)+{\partial I \over \partial y}{dy \over dx}-{d \over dx}\left(I\left(x,y\right)-h\left(x\right)\right)\right)dx}

Thus, the second order differential equation

f ( x , y ) + g ( x , y , d y d x ) d y d x + d 2 y d x 2 ( J ( x , y ) ) = 0 {\displaystyle f\left(x,y\right)+g\left(x,y,{dy \over dx}\right){dy \over dx}+{d^{2}y \over dx^{2}}\left(J\left(x,y\right)\right)=0}

is exact only if g ( x , y , d y d x ) = d J d x + J x = d J d x + J x {\displaystyle g\left(x,y,{dy \over dx}\right)={dJ \over dx}+{\partial J \over \partial x}={dJ \over dx}+{\partial J \over \partial x}} and only if the below expression

( f ( x , y ) + I y d y d x d d x ( I ( x , y ) h ( x ) ) ) d x = ( f ( x , y ) ( I ( x , y ) h ( x ) ) x ) d x {\displaystyle \int \left(f\left(x,y\right)+{\partial I \over \partial y}{dy \over dx}-{d \over dx}\left(I\left(x,y\right)-h\left(x\right)\right)\right)dx=\int \left(f\left(x,y\right)-{\partial \left(I\left(x,y\right)-h\left(x\right)\right) \over \partial x}\right)dx}

is a function solely of x {\displaystyle x} . Once h ( x ) {\displaystyle h\left(x\right)} is calculated with its arbitrary constant, it is added to I ( x , y ) h ( x ) {\displaystyle I\left(x,y\right)-h\left(x\right)} to make I ( x , y ) {\displaystyle I\left(x,y\right)} . If the equation is exact, then we can reduce to the first order exact form which is solvable by the usual method for first-order exact equations.

I ( x , y ) + J ( x , y ) d y d x = 0 {\displaystyle I\left(x,y\right)+J\left(x,y\right){dy \over dx}=0}

Now, however, in the final implicit solution there will be a C 1 x {\displaystyle C_{1}x} term from integration of h ( x ) {\displaystyle h\left(x\right)} with respect to x {\displaystyle x} twice as well as a C 2 {\displaystyle C_{2}} , two arbitrary constants as expected from a second-order equation.

Example

Given the differential equation

( 1 x 2 ) y 4 x y 2 y = 0 {\displaystyle \left(1-x^{2}\right)y''-4xy'-2y=0}

one can always easily check for exactness by examining the y {\displaystyle y''} term. In this case, both the partial and total derivative of 1 x 2 {\displaystyle 1-x^{2}} with respect to x {\displaystyle x} are 2 x {\displaystyle -2x} , so their sum is 4 x {\displaystyle -4x} , which is exactly the term in front of y {\displaystyle y'} . With one of the conditions for exactness met, one can calculate that

( 2 x ) d y = I ( x , y ) h ( x ) = 2 x y {\displaystyle \int \left(-2x\right)dy=I\left(x,y\right)-h\left(x\right)=-2xy}

Letting f ( x , y ) = 2 y {\displaystyle f\left(x,y\right)=-2y} , then

( 2 y 2 x y d d x ( 2 x y ) ) d x = ( 2 y 2 x y + 2 x y + 2 y ) d x = ( 0 ) d x = h ( x ) {\displaystyle \int \left(-2y-2xy'-{d \over dx}\left(-2xy\right)\right)dx=\int \left(-2y-2xy'+2xy'+2y\right)dx=\int \left(0\right)dx=h\left(x\right)}

So, h ( x ) {\displaystyle h\left(x\right)} is indeed a function only of x {\displaystyle x} and the second order differential equation is exact. Therefore, h ( x ) = C 1 {\displaystyle h\left(x\right)=C_{1}} and I ( x , y ) = 2 x y + C 1 {\displaystyle I\left(x,y\right)=-2xy+C_{1}} . Reduction to a first-order exact equation yields

2 x y + C 1 + ( 1 x 2 ) y = 0 {\displaystyle -2xy+C_{1}+\left(1-x^{2}\right)y'=0}

Integrating I ( x , y ) {\displaystyle I\left(x,y\right)} with respect to x {\displaystyle x} yields

x 2 y + C 1 x + i ( y ) = 0 {\displaystyle -x^{2}y+C_{1}x+i\left(y\right)=0}

where i ( y ) {\displaystyle i\left(y\right)} is some arbitrary function of y {\displaystyle y} . Differentiating with respect to y {\displaystyle y} gives an equation correlating the derivative and the y {\displaystyle y'} term.

x 2 + i ( y ) = 1 x 2 {\displaystyle -x^{2}+i'\left(y\right)=1-x^{2}}

So, i ( y ) = y + C 2 {\displaystyle i\left(y\right)=y+C_{2}} and the full implicit solution becomes

C 1 x + C 2 + y x 2 y = 0 {\displaystyle C_{1}x+C_{2}+y-x^{2}y=0}

Solving explicitly for y {\displaystyle y} yields

y = C 1 x + C 2 1 x 2 {\displaystyle y={\frac {C_{1}x+C_{2}}{1-x^{2}}}}

Higher order exact differential equations

The concepts of exact differential equations can be extended to any order. Starting with the exact second order equation

d 2 y d x 2 ( J ( x , y ) ) + d y d x ( d J d x + J x ) + f ( x , y ) = 0 {\displaystyle {d^{2}y \over dx^{2}}\left(J\left(x,y\right)\right)+{dy \over dx}\left({dJ \over dx}+{\partial J \over \partial x}\right)+f\left(x,y\right)=0}

it was previously shown that equation is defined such that

f ( x , y ) = d h ( x ) d x + d d x ( I ( x , y ) h ( x ) ) J x d y d x {\displaystyle f\left(x,y\right)={dh\left(x\right) \over dx}+{d \over dx}\left(I\left(x,y\right)-h\left(x\right)\right)-{\partial J \over \partial x}{dy \over dx}}

Implicit differentiation of the exact second-order equation n {\displaystyle n} times will yield an ( n + 2 ) {\displaystyle \left(n+2\right)} th order differential equation with new conditions for exactness that can be readily deduced from the form of the equation produced. For example, differentiating the above second-order differential equation once to yield a third-order exact equation gives the following form

d 3 y d x 3 ( J ( x , y ) ) + d 2 y d x 2 d J d x + d 2 y d x 2 ( d J d x + J x ) + d y d x ( d 2 J d x 2 + d d x ( J x ) ) + d f ( x , y ) d x = 0 {\displaystyle {d^{3}y \over dx^{3}}\left(J\left(x,y\right)\right)+{d^{2}y \over dx^{2}}{dJ \over dx}+{d^{2}y \over dx^{2}}\left({dJ \over dx}+{\partial J \over \partial x}\right)+{dy \over dx}\left({d^{2}J \over dx^{2}}+{d \over dx}\left({\partial J \over \partial x}\right)\right)+{df\left(x,y\right) \over dx}=0}

where

d f ( x , y ) d x = d 2 h ( x ) d x 2 + d 2 d x 2 ( I ( x , y ) h ( x ) ) d 2 y d x 2 J x d y d x d d x ( J x ) = F ( x , y , d y d x ) {\displaystyle {df\left(x,y\right) \over dx}={d^{2}h\left(x\right) \over dx^{2}}+{d^{2} \over dx^{2}}\left(I\left(x,y\right)-h\left(x\right)\right)-{d^{2}y \over dx^{2}}{\partial J \over \partial x}-{dy \over dx}{d \over dx}\left({\partial J \over \partial x}\right)=F\left(x,y,{dy \over dx}\right)}

and where F ( x , y , d y d x ) {\displaystyle F\left(x,y,{dy \over dx}\right)} is a function only of x , y {\displaystyle x,y} and d y d x {\displaystyle {dy \over dx}} . Combining all d y d x {\displaystyle {dy \over dx}} and d 2 y d x 2 {\displaystyle {d^{2}y \over dx^{2}}} terms not coming from F ( x , y , d y d x ) {\displaystyle F\left(x,y,{dy \over dx}\right)} gives

d 3 y d x 3 ( J ( x , y ) ) + d 2 y d x 2 ( 2 d J d x + J x ) + d y d x ( d 2 J d x 2 + d d x ( J x ) ) + F ( x , y , d y d x ) = 0 {\displaystyle {d^{3}y \over dx^{3}}\left(J\left(x,y\right)\right)+{d^{2}y \over dx^{2}}\left(2{dJ \over dx}+{\partial J \over \partial x}\right)+{dy \over dx}\left({d^{2}J \over dx^{2}}+{d \over dx}\left({\partial J \over \partial x}\right)\right)+F\left(x,y,{dy \over dx}\right)=0}

Thus, the three conditions for exactness for a third-order differential equation are: the d 2 y d x 2 {\displaystyle {d^{2}y \over dx^{2}}} term must be 2 d J d x + J x {\displaystyle 2{dJ \over dx}+{\partial J \over \partial x}} , the d y d x {\displaystyle {dy \over dx}} term must be d 2 J d x 2 + d d x ( J x ) {\displaystyle {d^{2}J \over dx^{2}}+{d \over dx}\left({\partial J \over \partial x}\right)} and

F ( x , y , d y d x ) d 2 d x 2 ( I ( x , y ) h ( x ) ) + d 2 y d x 2 J x + d y d x d d x ( J x ) {\displaystyle F\left(x,y,{dy \over dx}\right)-{d^{2} \over dx^{2}}\left(I\left(x,y\right)-h\left(x\right)\right)+{d^{2}y \over dx^{2}}{\partial J \over \partial x}+{dy \over dx}{d \over dx}\left({\partial J \over \partial x}\right)}

must be a function solely of x {\displaystyle x} .

Example

Consider the nonlinear third-order differential equation

y y + 3 y y + 12 x 2 = 0 {\displaystyle yy'''+3y'y''+12x^{2}=0}

If J ( x , y ) = y {\displaystyle J\left(x,y\right)=y} , then y ( 2 d J d x + J x ) {\displaystyle y''\left(2{dJ \over dx}+{\partial J \over \partial x}\right)} is 2 y y {\displaystyle 2y'y''} and y ( d 2 J d x 2 + d d x ( J x ) ) = y y {\displaystyle y'\left({d^{2}J \over dx^{2}}+{d \over dx}\left({\partial J \over \partial x}\right)\right)=y'y''} which together sum to 3 y y {\displaystyle 3y'y''} . Fortunately, this appears in our equation. For the last condition of exactness,

F ( x , y , d y d x ) d 2 d x 2 ( I ( x , y ) h ( x ) ) + d 2 y d x 2 J x + d y d x d d x ( J x ) = 12 x 2 0 + 0 + 0 = 12 x 2 {\displaystyle F\left(x,y,{dy \over dx}\right)-{d^{2} \over dx^{2}}\left(I\left(x,y\right)-h\left(x\right)\right)+{d^{2}y \over dx^{2}}{\partial J \over \partial x}+{dy \over dx}{d \over dx}\left({\partial J \over \partial x}\right)=12x^{2}-0+0+0=12x^{2}}

which is indeed a function only of x {\displaystyle x} . So, the differential equation is exact. Integrating twice yields that h ( x ) = x 4 + C 1 x + C 2 = I ( x , y ) {\displaystyle h\left(x\right)=x^{4}+C_{1}x+C_{2}=I\left(x,y\right)} . Rewriting the equation as a first-order exact differential equation yields

x 4 + C 1 x + C 2 + y y = 0 {\displaystyle x^{4}+C_{1}x+C_{2}+yy'=0}

Integrating I ( x , y ) {\displaystyle I\left(x,y\right)} with respect to x {\displaystyle x} gives that x 5 5 + C 1 x 2 + C 2 x + i ( y ) = 0 {\displaystyle {x^{5} \over 5}+C_{1}x^{2}+C_{2}x+i\left(y\right)=0} . Differentiating with respect to y {\displaystyle y} and equating that to the term in front of y {\displaystyle y'} in the first-order equation gives that i ( y ) = y {\displaystyle i'\left(y\right)=y} and that i ( y ) = y 2 2 + C 3 {\displaystyle i\left(y\right)={y^{2} \over 2}+C_{3}} . The full implicit solution becomes

x 5 5 + C 1 x 2 + C 2 x + C 3 + y 2 2 = 0 {\displaystyle {x^{5} \over 5}+C_{1}x^{2}+C_{2}x+C_{3}+{y^{2} \over 2}=0}

The explicit solution, then, is

y = ± C 1 x 2 + C 2 x + C 3 2 x 5 5 {\displaystyle y=\pm {\sqrt {C_{1}x^{2}+C_{2}x+C_{3}-{\frac {2x^{5}}{5}}}}}

See also

References

  1. ^ Wolfgang Walter (11 March 2013). Ordinary Differential Equations. Springer Science & Business Media. ISBN 978-1-4612-0601-9.
  2. ^ Vladimir A. Dobrushkin (16 December 2014). Applied Differential Equations: The Primary Course. CRC Press. ISBN 978-1-4987-2835-5.
  3. ^ Tenenbaum, Morris; Pollard, Harry (1963). "Solution of the Linear Differential Equation with Nonconstant Coefficients. Reduction of Order Method.". Ordinary Differential Equations: An Elementary Textbook for Students of Mathematics, Engineering and the Sciences. New York: Dover. pp. 248. ISBN 0-486-64940-7.

Further reading

  • Boyce, William E.; DiPrima, Richard C. (1986). Elementary Differential Equations (4th ed.). New York: John Wiley & Sons, Inc. ISBN 0-471-07894-8
  • v
  • t
  • e
Classification
Operations
Attributes of variables
Relation to processes
Solutions
Existence/uniqueness
Solution topics
Solution methods
Applications
Mathematicians