Factorion

In number theory, a factorion in a given number base b {\displaystyle b} is a natural number that equals the sum of the factorials of its digits.[1][2][3] The name factorion was coined by the author Clifford A. Pickover.[4]

Definition

Let n {\displaystyle n} be a natural number. For a base b > 1 {\displaystyle b>1} , we define the sum of the factorials of the digits[5][6] of n {\displaystyle n} , SFD b : N N {\displaystyle \operatorname {SFD} _{b}:\mathbb {N} \rightarrow \mathbb {N} } , to be the following:

SFD b ( n ) = i = 0 k 1 d i ! . {\displaystyle \operatorname {SFD} _{b}(n)=\sum _{i=0}^{k-1}d_{i}!.}

where k = log b n + 1 {\displaystyle k=\lfloor \log _{b}n\rfloor +1} is the number of digits in the number in base b {\displaystyle b} , n ! {\displaystyle n!} is the factorial of n {\displaystyle n} and

d i = n mod b i + 1 n mod b i b i {\displaystyle d_{i}={\frac {n{\bmod {b^{i+1}}}-n{\bmod {b^{i}}}}{b^{i}}}}

is the value of the i {\displaystyle i} th digit of the number. A natural number n {\displaystyle n} is a b {\displaystyle b} -factorion if it is a fixed point for SFD b {\displaystyle \operatorname {SFD} _{b}} , i.e. if SFD b ( n ) = n {\displaystyle \operatorname {SFD} _{b}(n)=n} .[7] 1 {\displaystyle 1} and 2 {\displaystyle 2} are fixed points for all bases b {\displaystyle b} , and thus are trivial factorions for all b {\displaystyle b} , and all other factorions are nontrivial factorions.

For example, the number 145 in base b = 10 {\displaystyle b=10} is a factorion because 145 = 1 ! + 4 ! + 5 ! {\displaystyle 145=1!+4!+5!} .

For b = 2 {\displaystyle b=2} , the sum of the factorials of the digits is simply the number of digits k {\displaystyle k} in the base 2 representation since 0 ! = 1 ! = 1 {\displaystyle 0!=1!=1} .

A natural number n {\displaystyle n} is a sociable factorion if it is a periodic point for SFD b {\displaystyle \operatorname {SFD} _{b}} , where SFD b k ( n ) = n {\displaystyle \operatorname {SFD} _{b}^{k}(n)=n} for a positive integer k {\displaystyle k} , and forms a cycle of period k {\displaystyle k} . A factorion is a sociable factorion with k = 1 {\displaystyle k=1} , and a amicable factorion is a sociable factorion with k = 2 {\displaystyle k=2} .[8][9]

All natural numbers n {\displaystyle n} are preperiodic points for SFD b {\displaystyle \operatorname {SFD} _{b}} , regardless of the base. This is because all natural numbers of base b {\displaystyle b} with k {\displaystyle k} digits satisfy b k 1 n ( b 1 ) ! ( k ) {\displaystyle b^{k-1}\leq n\leq (b-1)!(k)} . However, when k b {\displaystyle k\geq b} , then b k 1 > ( b 1 ) ! ( k ) {\displaystyle b^{k-1}>(b-1)!(k)} for b > 2 {\displaystyle b>2} , so any n {\displaystyle n} will satisfy n > SFD b ( n ) {\displaystyle n>\operatorname {SFD} _{b}(n)} until n < b b {\displaystyle n<b^{b}} . There are finitely many natural numbers less than b b {\displaystyle b^{b}} , so the number is guaranteed to reach a periodic point or a fixed point less than b b {\displaystyle b^{b}} , making it a preperiodic point. For b = 2 {\displaystyle b=2} , the number of digits k n {\displaystyle k\leq n} for any number, once again, making it a preperiodic point. This means also that there are a finite number of factorions and cycles for any given base b {\displaystyle b} .

The number of iterations i {\displaystyle i} needed for SFD b i ( n ) {\displaystyle \operatorname {SFD} _{b}^{i}(n)} to reach a fixed point is the SFD b {\displaystyle \operatorname {SFD} _{b}} function's persistence of n {\displaystyle n} , and undefined if it never reaches a fixed point.

Factorions for SFDb

b = (k − 1)!

Let k {\displaystyle k} be a positive integer and the number base b = ( k 1 ) ! {\displaystyle b=(k-1)!} . Then:

  • n 1 = k b + 1 {\displaystyle n_{1}=kb+1} is a factorion for SFD b {\displaystyle \operatorname {SFD} _{b}} for all k . {\displaystyle k.}
Proof

Let the digits of n 1 = d 1 b + d 0 {\displaystyle n_{1}=d_{1}b+d_{0}} be d 1 = k {\displaystyle d_{1}=k} , and d 0 = 1. {\displaystyle d_{0}=1.} Then

SFD b ( n 1 ) = d 1 ! + d 0 ! {\displaystyle \operatorname {SFD} _{b}(n_{1})=d_{1}!+d_{0}!}
= k ! + 1 ! {\displaystyle =k!+1!}
= k ( k 1 ) ! + 1 {\displaystyle =k(k-1)!+1}
= d 1 b + d 0 {\displaystyle =d_{1}b+d_{0}}
= n 1 {\displaystyle =n_{1}}

Thus n 1 {\displaystyle n_{1}} is a factorion for F b {\displaystyle F_{b}} for all k {\displaystyle k} .

  • n 2 = k b + 2 {\displaystyle n_{2}=kb+2} is a factorion for SFD b {\displaystyle \operatorname {SFD} _{b}} for all k {\displaystyle k} .
Proof

Let the digits of n 2 = d 1 b + d 0 {\displaystyle n_{2}=d_{1}b+d_{0}} be d 1 = k {\displaystyle d_{1}=k} , and d 0 = 2 {\displaystyle d_{0}=2} . Then

SFD b ( n 2 ) = d 1 ! + d 0 ! {\displaystyle \operatorname {SFD} _{b}(n_{2})=d_{1}!+d_{0}!}
= k ! + 2 ! {\displaystyle =k!+2!}
= k ( k 1 ) ! + 2 {\displaystyle =k(k-1)!+2}
= d 1 b + d 0 {\displaystyle =d_{1}b+d_{0}}
= n 2 {\displaystyle =n_{2}}

Thus n 2 {\displaystyle n_{2}} is a factorion for F b {\displaystyle F_{b}} for all k {\displaystyle k} .

Factorions
k {\displaystyle k} b {\displaystyle b} n 1 {\displaystyle n_{1}} n 2 {\displaystyle n_{2}}
4 6 41 42
5 24 51 52
6 120 61 62
7 720 71 72

b = k! − k + 1

Let k {\displaystyle k} be a positive integer and the number base b = k ! k + 1 {\displaystyle b=k!-k+1} . Then:

  • n 1 = b + k {\displaystyle n_{1}=b+k} is a factorion for SFD b {\displaystyle \operatorname {SFD} _{b}} for all k {\displaystyle k} .
Proof

Let the digits of n 1 = d 1 b + d 0 {\displaystyle n_{1}=d_{1}b+d_{0}} be d 1 = 1 {\displaystyle d_{1}=1} , and d 0 = k {\displaystyle d_{0}=k} . Then

SFD b ( n 1 ) = d 1 ! + d 0 ! {\displaystyle \operatorname {SFD} _{b}(n_{1})=d_{1}!+d_{0}!}
= 1 ! + k ! {\displaystyle =1!+k!}
= k ! + 1 k + k {\displaystyle =k!+1-k+k}
= 1 ( k ! k + 1 ) + k {\displaystyle =1(k!-k+1)+k}
= d 1 b + d 0 {\displaystyle =d_{1}b+d_{0}}
= n 1 {\displaystyle =n_{1}}

Thus n 1 {\displaystyle n_{1}} is a factorion for F b {\displaystyle F_{b}} for all k {\displaystyle k} .

Factorions
k {\displaystyle k} b {\displaystyle b} n 1 {\displaystyle n_{1}}
3 4 13
4 21 14
5 116 15
6 715 16

Table of factorions and cycles of SFDb

All numbers are represented in base b {\displaystyle b} .

Base b {\displaystyle b} Nontrivial factorion ( n 1 {\displaystyle n\neq 1} , n 2 {\displaystyle n\neq 2} )[10] Cycles
2 {\displaystyle \varnothing } {\displaystyle \varnothing }
3 {\displaystyle \varnothing } {\displaystyle \varnothing }
4 13 3 → 12 → 3
5 144 {\displaystyle \varnothing }
6 41, 42 {\displaystyle \varnothing }
7 {\displaystyle \varnothing } 36 → 2055 → 465 → 2343 → 53 → 240 → 36
8 {\displaystyle \varnothing }

3 → 6 → 1320 → 12

175 → 12051 → 175

9 62558
10 145, 40585

871 → 45361 → 871[9]

872 → 45362 → 872[8]

See also

References

  1. ^ Sloane, Neil, "A014080", On-Line Encyclopedia of Integer Sequences
  2. ^ Gardner, Martin (1978), "Factorial Oddities", Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-Of-Mind, Vintage Books, pp. 61 and 64, ISBN 9780394726236
  3. ^ Madachy, Joseph S. (1979), Madachy's Mathematical Recreations, Dover Publications, p. 167, ISBN 9780486237626
  4. ^ Pickover, Clifford A. (1995), "The Loneliness of the Factorions", Keys to Infinity, John Wiley & Sons, pp. 169–171 and 319–320, ISBN 9780471193340 – via Google Books
  5. ^ Gupta, Shyam S. (2004), "Sum of the Factorials of the Digits of Integers", The Mathematical Gazette, 88 (512), The Mathematical Association: 258–261, doi:10.1017/S0025557200174996, JSTOR 3620841, S2CID 125854033
  6. ^ Sloane, Neil, "A061602", On-Line Encyclopedia of Integer Sequences
  7. ^ Abbott, Steve (2004), "SFD Chains and Factorion Cycles", The Mathematical Gazette, 88 (512), The Mathematical Association: 261–263, doi:10.1017/S002555720017500X, JSTOR 3620842, S2CID 99976100
  8. ^ a b Sloane, Neil, "A214285", On-Line Encyclopedia of Integer Sequences
  9. ^ a b Sloane, Neil, "A254499", On-Line Encyclopedia of Integer Sequences
  10. ^ Sloane, Neil, "A193163", On-Line Encyclopedia of Integer Sequences

External links

  • Factorion at Wolfram MathWorld
  • v
  • t
  • e
Classes of natural numbers
Of the form a × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via a sieve
  • Mathematics portal