FalconSAT

Program within the United States Air Force Academy for building small satellites

FalconSAT-1

FalconSAT is the United States Air Force Academy's (USAFA) small satellite engineering program. Satellites are designed, built, tested, and operated by Academy cadets. The project is administered by the USAFA Space Systems Research Center under the direction of the Department of Astronautics. Most of the cadets who work on the project are pursuing a bachelor of science degree in astronautical engineering, although students from other disciplines (typically electrical engineering, mechanical engineering, or computer science) join the project.

Compared to most commercial satellite projects, FalconSAT is considerably lower budget, and follows a very accelerated development cycle. Because of the near total personnel turnover every year (the program is generally a senior cadet project, and graduating cadets must be replaced yearly) it forces the cadet engineers to very quickly learn and become familiar with the satellite systems to which they are assigned.

FalconSAT used to have a sister project, FalconLaunch, to design and develop sounding rocket class vehicles.

Satellites

  • FalconGOLD (COSPAR 1997-065B) – was launched on 25 October 1997 on an Atlas rocket. Tested and proved the feasibility of using GPS to determine orbit position when outside the extent of the GPS constellation. Various web pages document FalconGOLD telemetry, a USAF Academy award, and an AIAA award. The design and launch team is documented on the AIAA award plaque. GPSWorld.com's October 1999 article declared "The results of this low-cost, off-the-shelf experiment were quite encouraging for the use of GPS at high altitudes". This work accelerated enthusiasm for GPS side lobe exploitation.[1] The mission operated from 3 to 9 November 1997, after which the batteries of the device were depleted and the device along with the rocket upper stage to which it was solidly bolted on became derelict objects in orbit.[2]
  • FalconSAT-1 (FS 1, COSPAR 2000-004D) – was launched on 27 January 2000 on a converted Minuteman II missile (that is, Minotaur 1 rocket). It carried the CHAWS (Charging Hazards and Wake Studies) experiment developed by the Physics Department at the Academy. The satellite was successfully placed into orbit but was lost about a month later due to an electrical power system failure.[3] No useful science data was returned, despite repeated recovery attempts. The mission was declared a loss after about a month in orbit. A USAF press statement of June 2002 said: "While FalconSat-1 was a technical failure, it was a resounding academic success".[4][5]
  • FalconSAT-2 (FS 2, COSPAR 2006-F01) – Significantly damaged when Falcon 1 launch vehicle failed seconds after launch on 24 March 2006. Despite the loss of the launch vehicle, the satellite landed, mostly intact in a support building for the launch vehicle. It was originally scheduled for launch on STS-114 with the Space Shuttle Atlantis in January 2003. Its payload was the MESA instrument (Miniaturized electrostatic Analyzer), which would have been used to sample plasma in the upper atmosphere. The data would have been used to correlate the effect of ionospheric plasma on trans-ionospheric radio communications.[6]
  • FalconSAT-3 (FS 3, COSPAR 2007-006E) – contains 5 experiments, including a gravity gradient boom, launch adapter shock ring, and several AFRL sponsored payloads, including MPACS Archived 22 March 2016 at the Wayback Machine (Micro Propulsion Attitude Control System), FLAPS (Flat Plasma Spectrometer), and PLANE (Plasma Local Anomalous Noise Experiment). The launch, aboard an Atlas V 401 from SLC-41 at Cape Canaveral Air Force Station, was scheduled to occur on 8 December 2006, however as this was on the same day as the scheduled launch of STS-116, and a 48-hour turnaround was required, it was delayed. Launch took place on 9 March 2007 at 03:10 UTC, alongside MidSTAR-1. While the FalconSAT-3 software architecture at launch limited access to all ADCS sensors, all scientific mission objectives were achieved. Bus software updates are ongoing, enabling enhanced visibility into satellite bus operations and payload performance.[7] In addition to providing both a ground and space based training platform, FalconSAT-3 was used as a trainer for cadets at West Point,[8] student officers at the Air Force Institute of Technology, and a ground station is in work at Vandenberg AFB, California to support the Air Force's Space 100 course. In late September 2017, the Air Force transferred control of FalconSAT-3 to AMSAT for use by the amateur radio service for the 5–6 years of expected life remaining. Non-amateur radio frequencies were disabled. The satellite can be used as a packet radio bulletin board and as a digipeater.[9][10] FalconSAT-3 decayed from orbit on 21 January 2023.[11]
  • FalconSAT-5 (FS 5, USA 221, COSPAR 2010-062E) – was launched on 20 November 2010 at 01:25 UTC on board a Minotaur IV. Though the US$12,000,000 mission is listed on a NASA website, data are not being made available to the public through that portal. Instead, all satellite information and data are maintained internally at USAFA, with no public information being released regarding the status of this mission.[12]
  • FalconSAT-6 (FS 6, COSPAR 2018-099BK) – was launched on 3 December 2018 on board a Falcon 9.[13] The satellite test various thrusters and measure the local plasma.[14]
  • Falcon Orbital Debris Experiment (Falcon ODE, also known as AFOTEC 1 (Air Force Operational Test and Evaluation Center 1), COSPAR 2019-026A) - was launched 5 May 2019 on an Electron rocket on the STP-27RD mission.[15] which is intended to evaluate ground-based tracking of space objects.[16]
  • FalconSat-7 (FS 7, also known as Peregrine or DOTSI, COSPAR 2019-036) – was launched on 25 June 2019 aboard a Falcon Heavy. The primary objective is to demonstrate solar space telescope technology utilizing a membrane photon sieve.[17][18][19]
  • FalconSAT-8 was launched on 17 May 2020 at 13:14 UTC on board an Atlas V rocket. The spacecraft will test a novel electromagnetic propulsion system, low-weight antenna technology, a star tracker, a carbon nanotube radio frequency experiment, a commercial reaction wheel to provide attitude control in orbit. The FalconSAT-8 was deployed from the Boeing X-37B spacecraft around 28 May 2020 and is being used by cadets at the Air Force Academy in Colorado Springs, CO.[20][21]
  • FalconSAT-X was launched on 11 November 2023 at 18:49 UTC on board a Falcon 9 Block 5 rocket, as part of the Transporter-9 rideshare mission.[22][23] The satellite will serve as a testbed to demonstrate new technologies as its predecessors, but no information has been released so far about the experiments onboard.

In addition to the above, there were plans to construct FalconSAT-4 (FS 4) satellite, but the mission planned for this satellite was deemed too ambitious and funding could not be found for the satellite, leading to cancellation early on in the development. The satellite was replaced with the simpler FalconSAT-5.[24]

References

  • Spaceflight portal
  1. ^ GPS Signals in a Geosynchronous Transfer Orbit: "Falcon Gold" Data Processing (PDF) (Report). DTIC. Retrieved 5 December 2022.
  2. ^ "Falcon Gold". Gunter's Space Page.
  3. ^ [1] Archived 29 July 2007 at the Wayback Machine
  4. ^ "eoPortal directory: FalconSat-1". Eoportal.org. Archived from the original on 19 March 2012. Retrieved 15 February 2012.
  5. ^ "FalconSat 1". Gunter's Space Page.
  6. ^ "FalconSat 2". Gunter's Space Page.
  7. ^ "Academics - United States Air Force Academy" (PDF). Archived (PDF) from the original on 4 March 2016.
  8. ^ "US Air Force Academy FalconSAT-3 Goes Joint with the Point (UAV) : Satnews Publishers". Satnews.com. Archived from the original on 12 January 2012. Retrieved 15 February 2012.
  9. ^ "FalconSAT-3 Now Open for Amateur Radio Use". www.arrl.org. Archived from the original on 30 September 2017.
  10. ^ "FalconSat 3". Gunter's Space Page.
  11. ^ "FALCONSAT 3". N2YO.com. 26 January 2023. Retrieved 26 January 2023.
  12. ^ "FalconSat 5". Gunter's Space Page.
  13. ^ Gunters Space Page: FalconSat 6
  14. ^ "FalconSat 6". Retrieved 26 November 2018.
  15. ^ "Falcon-ODE (AFOTEC 1)". Gunter's Space Page.
  16. ^ Messier, Doug (8 May 2019). "Three USAF Experimental Satellites Launched Aboard Electron Rocket". Retrieved 16 May 2020.
  17. ^ "FalconSat-7 - eoPortal Directory - Satellite Missions". directory.eoportal.org. Retrieved 19 March 2019.
  18. ^ @planet4589 (25 June 2019). "According to @StephenClark1 Falconsat-7 is also called DOTSI - I haven't come across this name myself" (Tweet) – via Twitter.
  19. ^ "FalconSat 7 (Peregrine, DOTSI)". Gunter's Space Page.
  20. ^ McDowell, Jonathan (14 June 2020). "Jonathan's Space Report, No. 779". No. 779. Jonathan's Space Report. Retrieved 22 January 2022.
  21. ^ Paige, Miranda (3 November 2021). "Cadets from the U.S. Air Force Academy build satellite operating in space". KKTV. Retrieved 9 November 2022.
  22. ^ Lentz, Danny (11 November 2023). "SpaceX Transporter 9 rideshare features new OTV from Tom Mueller's Impulse Space". NASASpaceFlight. Retrieved 11 November 2023.
  23. ^ "Cadet-built satellite launches into space". USAFA. Retrieved 14 November 2023.
  24. ^ "FalconSat 4". Gunter's Space Page.

External links

  • Program summary and FalconSAT-2 launch video
  • FalconSAT-2 press release
  • FalconSAT-3 on Gunter's Space Page
  • v
  • t
  • e
United States Air Force Academy
Located in: Air Force Academy, Colorado
Academics
AircraftAthleticsCampusHistoryMilitary trainingPeopleTraditionsUnits
  • Founded: 1954
  • Students: Approximately 4,000
  • Endowment: 47 million
  • v
  • t
  • e
Orbital launches in 2007
January
February
March
April
May
June
July
August
September
October
November
December
Launches are separated by dots ( • ), payloads by commas ( , ), multiple names for the same satellite by slashes ( / ). Cubesats are smaller.
Crewed flights are underlined. Launch failures are marked with the † sign. Payloads deployed from other spacecraft are (enclosed in parentheses).