Fisher–Tippett–Gnedenko theorem

In statistics, the Fisher–Tippett–Gnedenko theorem (also the Fisher–Tippett theorem or the extreme value theorem) is a general result in extreme value theory regarding asymptotic distribution of extreme order statistics. The maximum of a sample of iid random variables after proper renormalization can only converge in distribution to one of only 3 possible distribution families: the Gumbel distribution, the Fréchet distribution, or the Weibull distribution. Credit for the extreme value theorem and its convergence details are given to Fréchet (1927),[1] Fisher and Tippett (1928),[2] Mises (1936),[3][4] and Gnedenko (1943).[5]

The role of the extremal types theorem for maxima is similar to that of central limit theorem for averages, except that the central limit theorem applies to the average of a sample from any distribution with finite variance, while the Fisher–Tippet–Gnedenko theorem only states that if the distribution of a normalized maximum converges, then the limit has to be one of a particular class of distributions. It does not state that the distribution of the normalized maximum does converge.

Statement

Let   X 1 , X 2 , , X n   {\displaystyle \ X_{1},X_{2},\ldots ,X_{n}\ } be an n-sized sample of independent and identically-distributed random variables, each of whose cumulative distribution function is   F   . {\displaystyle \ F~.} Suppose that there exist two sequences of real numbers   a n > 0   {\displaystyle \ a_{n}>0\ } and   b n R   {\displaystyle \ b_{n}\in \mathbb {R} \ } such that the following limits converge to a non-degenerate distribution function:

lim n P {   max { X 1 , , X n } b n   a n x   } = G ( x )   , {\displaystyle \lim _{n\to \infty }{\boldsymbol {\mathcal {P}}}\left\{{\frac {\ \max\{X_{1},\dots ,X_{n}\}-b_{n}\ }{a_{n}}}\leq x\ \right\}=G(x)\ ,}

or equivalently:

lim n (   F (   a n   x + b n   ) ) n = G ( x )   . {\displaystyle \lim _{n\to \infty }{\Bigl (}\ F\left(\ a_{n}\ x+b_{n}\ \right){\Bigr )}^{n}=G(x)~.}

In such circumstances, the limiting distribution   G   {\displaystyle \ G\ } belongs to either the Gumbel, the Fréchet, or the Weibull distribution family.[6]

In other words, if the limit above converges, then up to a linear change of coordinates G ( x ) {\displaystyle G(x)} will assume either the form:[7]

G γ ( x ) = exp ( ( 1 + γ   x ) ( 1 γ ) ) {\displaystyle G_{\gamma }(x)=\exp \left(-{\Bigl (}1+\gamma \ x{\Bigr )}^{\left({\tfrac {-1\;}{\gamma }}\right)}\right)\quad } for γ 0   , {\displaystyle \quad \gamma \neq 0\ ,}

with the non-zero parameter   γ   {\displaystyle \ \gamma \ } also satisfying   1 + γ   x > 0   {\displaystyle \ 1+\gamma \ x>0\ } for every   x   {\displaystyle \ x\ } value supported by   F   {\displaystyle \ F\ } (for all values   x   {\displaystyle \ x\ } for which   F ( x ) 0   {\displaystyle \ F(x)\neq 0\ } ). Otherwise it has the form:

G 0 ( x ) = exp (   exp ( x )   ) {\displaystyle G_{0}(x)=\exp {\bigl (}\ -\exp(-x)\ {\bigr )}\quad } for γ = 0   . {\displaystyle \quad \gamma =0~.}

This is the cumulative distribution function of the generalized extreme value distribution (GEV) with extreme value index   γ   .   {\displaystyle \ \gamma ~.\ } The GEV distribution groups the Gumbel, Fréchet, and Weibull distributions into a single composite form.

Conditions of convergence

The Fisher–Tippett–Gnedenko theorem is a statement about the convergence of the limiting distribution   G ( x )   , {\displaystyle \ G(x)\ ,} above. The study of conditions for convergence of   G   {\displaystyle \ G\ } to particular cases of the generalized extreme value distribution began with Mises (1936)[3][5][4] and was further developed by Gnedenko (1943).[5]

Let   F   {\displaystyle \ F\ } be the distribution function of   X   , {\displaystyle \ X\ ,} and   X 1 , , X n   {\displaystyle \ X_{1},\dots ,X_{n}\ } be some i.i.d. sample thereof.
Also let   x m a x   {\displaystyle \ x_{\mathsf {max}}\ } be the population maximum:   x m a x sup   {   x     F ( x ) < 1   }   .   {\displaystyle \ x_{\mathsf {max}}\equiv \sup \ \{\ x\ \mid \ F(x)<1\ \}~.\ }

The limiting distribution of the normalized sample maximum, given by G {\displaystyle G} above, will then be:[7]


Fréchet distribution   (   γ > 0   ) {\displaystyle \ \left(\ \gamma >0\ \right)}
For strictly positive   γ > 0   , {\displaystyle \ \gamma >0\ ,} the limiting distribution converges if and only if
  x m a x =   {\displaystyle \ x_{\mathsf {max}}=\infty \ }
and
  lim t   1 F ( u   t )   1 F ( t ) = u ( 1   γ )   {\displaystyle \ \lim _{t\rightarrow \infty }{\frac {\ 1-F(u\ t)\ }{1-F(t)}}=u^{\left({\tfrac {-1~}{\gamma }}\right)}\ } for all   u > 0   . {\displaystyle \ u>0~.}
In this case, possible sequences that will satisfy the theorem conditions are
b n = 0 {\displaystyle b_{n}=0}
and
  a n = F 1 ( 1 1   n   )   . {\displaystyle \ a_{n}={F^{-1}}\!\!\left(1-{\tfrac {1}{\ n\ }}\right)~.}
Strictly positive   γ   {\displaystyle \ \gamma \ } corresponds to what is called a heavy tailed distribution.


Gumbel distribution   (   γ = 0   ) {\displaystyle \ \left(\ \gamma =0\ \right)}
For trivial   γ = 0   , {\displaystyle \ \gamma =0\ ,} and with   x m a x   {\displaystyle \ x_{\mathsf {max}}\ } either finite or infinite, the limiting distribution converges if and only if
  lim t x m a x   1 F (   t + u   g ~ ( t )   )   1 F ( t ) = e u   {\displaystyle \ \lim _{t\rightarrow x_{\mathsf {max}}}{\frac {\ 1-F{\bigl (}\ t+u\ {\tilde {g}}(t)\ {\bigr )}\ }{1-F(t)}}=e^{-u}\ } for all   u > 0   {\displaystyle \ u>0\ }
with
  g ~ ( t )   t x m a x (   1 F ( s )   )   d   s   1 F ( t )   . {\displaystyle \ {\tilde {g}}(t)\equiv {\frac {\ \int _{t}^{x_{\mathsf {max}}}{\Bigl (}\ 1-F(s)\ {\Bigr )}\ \mathrm {d} \ s\ }{1-F(t)}}~.}
Possible sequences here are
  b n = F 1 (   1 1   n     )   {\displaystyle \ b_{n}={F^{-1}}\!\!\left(\ 1-{\tfrac {1}{\ n\ }}\ \right)\ }
and
  a n = g ~ ( F 1 (   1 1   n     ) )   . {\displaystyle \ a_{n}={\tilde {g}}{\Bigl (}\;{F^{-1}}\!\!\left(\ 1-{\tfrac {1}{\ n\ }}\ \right)\;{\Bigr )}~.}


Weibull distribution   (   γ < 0   ) {\displaystyle \ \left(\ \gamma <0\ \right)}
For strictly negative   γ < 0   {\displaystyle \ \gamma <0\ } the limiting distribution converges if and only if
  x m a x   < {\displaystyle \ x_{\mathsf {max}}\ <\infty \quad } (is finite)
and
  lim t 0 +   1 F (   x m a x u   t   )   1 F (   x m a x t   ) = u ( 1     γ   )   {\displaystyle \ \lim _{t\rightarrow 0^{+}}{\frac {\ 1-F\!\left(\ x_{\mathsf {max}}-u\ t\ \right)\ }{1-F(\ x_{\mathsf {max}}-t\ )}}=u^{\left({\tfrac {-1~}{\ \gamma \ }}\right)}\ } for all   u > 0   . {\displaystyle \ u>0~.}
Note that for this case the exponential term   1     γ     {\displaystyle \ {\tfrac {-1~}{\ \gamma \ }}\ } is strictly positive, since   γ   {\displaystyle \ \gamma \ } is strictly negative.
Possible sequences here are
  b n = x m a x   {\displaystyle \ b_{n}=x_{\mathsf {max}}\ }
and
  a n = x m a x F 1 (   1 1   n     )   . {\displaystyle \ a_{n}=x_{\mathsf {max}}-{F^{-1}}\!\!\left(\ 1-{\frac {1}{\ n\ }}\ \right)~.}


Note that the second formula (the Gumbel distribution) is the limit of the first (the Fréchet distribution) as   γ   {\displaystyle \ \gamma \ } goes to zero.

Examples

Fréchet distribution

The Cauchy distribution's density function is:

f ( x ) = 1   π 2 + x 2     , {\displaystyle f(x)={\frac {1}{\ \pi ^{2}+x^{2}\ }}\ ,}

and its cumulative distribution function is:

F ( x ) =   1   2 + 1   π   arctan ( x   π   )   . {\displaystyle F(x)={\frac {\ 1\ }{2}}+{\frac {1}{\ \pi \ }}\arctan \left({\frac {x}{\ \pi \ }}\right)~.}

A little bit of calculus show that the right tail's cumulative distribution   1 F ( x )   {\displaystyle \ 1-F(x)\ } is asymptotic to   1   x     , {\displaystyle \ {\frac {1}{\ x\ }}\ ,} or

ln F ( x ) 1     x     a s   x   , {\displaystyle \ln F(x)\rightarrow {\frac {-1~}{\ x\ }}\quad {\mathsf {~as~}}\quad x\rightarrow \infty \ ,}

so we have

ln (   F ( x ) n   ) = n   ln F ( x ) n     x     . {\displaystyle \ln \left(\ F(x)^{n}\ \right)=n\ \ln F(x)\sim -{\frac {-n~}{\ x\ }}~.}

Thus we have

F ( x ) n exp ( n     x   ) {\displaystyle F(x)^{n}\approx \exp \left({\frac {-n~}{\ x\ }}\right)}

and letting   u x   n   1   {\displaystyle \ u\equiv {\frac {x}{\ n\ }}-1\ } (and skipping some explanation)

lim n (   F ( n   u + n ) n   ) = exp ( 1     1 + u   ) = G 1 ( u )   {\displaystyle \lim _{n\to \infty }{\Bigl (}\ F(n\ u+n)^{n}\ {\Bigr )}=\exp \left({\tfrac {-1~}{\ 1+u\ }}\right)=G_{1}(u)\ }

for any   u   . {\displaystyle \ u~.} The expected maximum value therefore goes up linearly with n .

Gumbel distribution

Let us take the normal distribution with cumulative distribution function

F ( x ) = 1 2 erfc ( x     2     )   . {\displaystyle F(x)={\frac {1}{2}}\operatorname {erfc} \left({\frac {-x~}{\ {\sqrt {2\ }}\ }}\right)~.}

We have

ln F ( x )   exp ( 1 2 x 2 )   2 π     x   a s   x {\displaystyle \ln F(x)\rightarrow -{\frac {\ \exp \left(-{\tfrac {1}{2}}x^{2}\right)\ }{{\sqrt {2\pi \ }}\ x}}\quad {\mathsf {~as~}}\quad x\rightarrow \infty }

and thus

ln (   F ( x ) n   ) = n ln F ( x )   n exp ( 1 2 x 2 )   2 π     x   a s   x   . {\displaystyle \ln \left(\ F(x)^{n}\ \right)=n\ln F(x)\rightarrow -{\frac {\ n\exp \left(-{\tfrac {1}{2}}x^{2}\right)\ }{{\sqrt {2\pi \ }}\ x}}\quad {\mathsf {~as~}}\quad x\rightarrow \infty ~.}

Hence we have

F ( x ) n exp (     n   exp ( 1 2 x 2 )     2 π     x   )   . {\displaystyle F(x)^{n}\approx \exp \left(-\ {\frac {\ n\ \exp \left(-{\tfrac {1}{2}}x^{2}\right)\ }{\ {\sqrt {2\pi \ }}\ x\ }}\right)~.}

If we define   c n   {\displaystyle \ c_{n}\ } as the value that exactly satisfies

  n exp (   1 2 c n 2 )     2 π     c n   = 1   , {\displaystyle {\frac {\ n\exp \left(-\ {\tfrac {1}{2}}c_{n}^{2}\right)\ }{\ {\sqrt {2\pi \ }}\ c_{n}\ }}=1\ ,}

then around   x = c n   {\displaystyle \ x=c_{n}\ }

  n   exp (   1 2 x 2 )   2 π     x exp (   c n   ( c n x )   )   . {\displaystyle {\frac {\ n\ \exp \left(-\ {\tfrac {1}{2}}x^{2}\right)\ }{{\sqrt {2\pi \ }}\ x}}\approx \exp \left(\ c_{n}\ (c_{n}-x)\ \right)~.}

As   n   {\displaystyle \ n\ } increases, this becomes a good approximation for a wider and wider range of   c n   ( c n x )   {\displaystyle \ c_{n}\ (c_{n}-x)\ } so letting   u c n   ( c n x )   {\displaystyle \ u\equiv c_{n}\ (c_{n}-x)\ } we find that

lim n (   F ( u   c n   + c n ) n   ) = exp ( exp ( u ) ) = G 0 ( u )   . {\displaystyle \lim _{n\to \infty }{\biggl (}\ F\left({\tfrac {u}{~c_{n}\ }}+c_{n}\right)^{n}\ {\biggr )}=\exp \!{\Bigl (}-\exp(-u){\Bigr )}=G_{0}(u)~.}

Equivalently,

lim n P   (   max { X 1 ,   ,   X n } c n   ( u   c n   ) u ) = exp ( exp ( u ) ) = G 0 ( u )   . {\displaystyle \lim _{n\to \infty }{\boldsymbol {\mathcal {P}}}\ {\Biggl (}{\frac {\ \max\{X_{1},\ \ldots ,\ X_{n}\}-c_{n}\ }{\left({\frac {u}{~c_{n}\ }}\right)}}\leq u{\Biggr )}=\exp \!{\Bigl (}-\exp(-u){\Bigr )}=G_{0}(u)~.}

With this result, we see retrospectively that we need   ln c n   ln ln n   2   {\displaystyle \ \ln c_{n}\approx {\frac {\ \ln \ln n\ }{2}}\ } and then

c n 2 ln n     , {\displaystyle c_{n}\approx {\sqrt {2\ln n\ }}\ ,}

so the maximum is expected to climb toward infinity ever more slowly.

Weibull distribution

We may take the simplest example, a uniform distribution between 0 and 1, with cumulative distribution function

F ( x ) = x   {\displaystyle F(x)=x\ } for any x value from 0 to 1 .

For values of   x     1   {\displaystyle \ x\ \rightarrow \ 1\ } we have

ln (   F ( x ) n   ) = n   ln F ( x )     n   (   1 x   )   . {\displaystyle \ln {\Bigl (}\ F(x)^{n}\ {\Bigr )}=n\ \ln F(x)\ \rightarrow \ n\ (\ 1-x\ )~.}

So for   x 1   {\displaystyle \ x\approx 1\ } we have

  F ( x ) n exp (   n n   x   )   . {\displaystyle \ F(x)^{n}\approx \exp(\ n-n\ x\ )~.}

Let   u 1 + n   (   1 x   )   {\displaystyle \ u\equiv 1+n\ (\ 1-x\ )\ } and get

lim n (   F (   u   n + 1   1   n )   ) n = exp (   ( 1 u )   ) = G 1 ( u )   . {\displaystyle \lim _{n\to \infty }{\Bigl (}\ F\!\left({\tfrac {\ u\ }{n}}+1-{\tfrac {\ 1\ }{n}}\right)\ {\Bigr )}^{n}=\exp \!{\bigl (}\ -(1-u)\ {\bigr )}=G_{-1}(u)~.}

Close examination of that limit shows that the expected maximum approaches 1 in inverse proportion to n .

See also

References

  1. ^ Fréchet, M. (1927). "Sur la loi de probabilité de l'écart maximum". Annales de la Société Polonaise de Mathématique. 6 (1): 93–116.
  2. ^ Fisher, R.A.; Tippett, L.H.C. (1928). "Limiting forms of the frequency distribution of the largest and smallest member of a sample". Proc. Camb. Phil. Soc. 24 (2): 180–190. Bibcode:1928PCPS...24..180F. doi:10.1017/s0305004100015681. S2CID 123125823.
  3. ^ a b von Mises, R. (1936). "La distribution de la plus grande de n valeurs" [The distribution of the largest of n values]. Rev. Math. Union Interbalcanique. 1 (in French): 141–160.
  4. ^ a b Falk, Michael; Marohn, Frank (1993). "von Mises conditions revisited". The Annals of Probability: 1310–1328.
  5. ^ a b c Gnedenko, B.V. (1943). "Sur la distribution limite du terme maximum d'une serie aleatoire". Annals of Mathematics. 44 (3): 423–453. doi:10.2307/1968974. JSTOR 1968974.
  6. ^ Mood, A.M. (1950). "5. Order Statistics". Introduction to the theory of statistics. New York, NY: McGraw-Hill. pp. 251–270.
  7. ^ a b Haan, Laurens; Ferreira, Ana (2007). Extreme Value Theory: An introduction. Springer.

Further reading

  • Lee, Seyoon; Kim, Joseph H.T. (8 March 2018). "Exponentiated generalized Pareto distribution". Communications in Statistics – Theory and Methods. 48 (8) (online ed.): 2014–2038. arXiv:1708.01686. doi:10.1080/03610926.2018.1441418. ISSN 1532-415X – via tandfonline.com.