Fortunate number

Integer named after Reo Fortune
Unsolved problem in mathematics:

Are any Fortunate numbers composite? (Fortune's conjecture)

A Fortunate number, named after Reo Fortune, is the smallest integer m > 1 such that, for a given positive integer n, pn# + m is a prime number, where the primorial pn# is the product of the first n prime numbers.

For example, to find the seventh Fortunate number, one would first calculate the product of the first seven primes (2, 3, 5, 7, 11, 13 and 17), which is 510510. Adding 2 to that gives another even number, while adding 3 would give another multiple of 3. One would similarly rule out the integers up to 18. Adding 19, however, gives 510529, which is prime. Hence 19 is a Fortunate number. The Fortunate number for pn# is always above pn and all its divisors are larger than pn. This is because pn#, and thus pn# + m, is divisible by the prime factors of m not larger than pn.

The Fortunate numbers for the first primorials are:

3, 5, 7, 13, 23, 17, 19, 23, 37, 61, 67, 61, 71, 47, 107, 59, 61, 109, etc. (sequence A005235 in the OEIS).

The Fortunate numbers sorted in numerical order with duplicates removed:

3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197, 199, ... (sequence A046066 in the OEIS).

Fortune conjectured that no Fortunate number is composite (Fortune's conjecture).[1] A Fortunate prime is a Fortunate number which is also a prime number. As of 2012[update], all the known Fortunate numbers are prime. If a composite Fortunate number does exist, it must be greater than or equal to pn+12. [citation needed]

References

  1. ^ Guy, Richard K. (1994). Unsolved problems in number theory (2nd ed.). Springer. pp. 7–8. ISBN 0-387-94289-0.
  • Chris Caldwell, "The Prime Glossary: Fortunate number" at the Prime Pages.
  • Weisstein, Eric W. "Fortunate Prime". MathWorld.
  • v
  • t
  • e
Classes of natural numbers
Of the form a × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via a sieve
  • Mathematics portal