Gaboxadol

Chemical compound
  • none
Identifiers
  • 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3(2H)-one
CAS Number
  • 64603-91-4 checkY
PubChem CID
  • 3448
IUPHAR/BPS
  • 4322
ChemSpider
  • 3330 checkY
UNII
  • K1M5RVL18S
KEGG
  • D04282 checkY
ChEMBL
  • ChEMBL312443 checkY
CompTox Dashboard (EPA)
  • DTXSID0045206 Edit this at Wikidata
ECHA InfoCard100.059.039 Edit this at WikidataChemical and physical dataFormulaC6H8N2O2Molar mass140.142 g·mol−13D model (JSmol)
  • Interactive image
  • O=C1/C2=C(\ON1)CNCC2
InChI
  • InChI=1S/C6H8N2O2/c9-6-4-1-2-7-3-5(4)10-8-6/h7H,1-3H2,(H,8,9) checkY
  • Key:ZXRVKCBLGJOCEE-UHFFFAOYSA-N checkY
 ☒NcheckY (what is this?)  (verify)

Gaboxadol, also known as 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP), is a conformationally constrained derivative of the alkaloid muscimol that was first synthesized in 1977 by the Danish chemist Poul Krogsgaard-Larsen.[1] In the early 1980s gaboxadol was the subject of a series of pilot studies that tested its efficacy as an analgesic and anxiolytic, as well as a treatment for tardive dyskinesia, Huntington's disease, Alzheimer's disease, and spasticity.[1] It was not until 1996 that researchers attempted to harness gaboxadol's frequently reported sedative "adverse effect" for the treatment of insomnia, resulting in a series of clinical trials sponsored by Lundbeck and Merck.[1][2] In March, 2007, Merck and Lundbeck cancelled work on the drug, citing safety concerns and the failure of an efficacy trial. It acts on the GABA system, but in a different way from benzodiazepines, Z-Drugs, and barbiturates. Lundbeck states that gaboxadol also increases deep sleep (stage 4). Unlike benzodiazepines, gaboxadol does not demonstrate reinforcement in mice or baboons despite activation of dopaminergic neurons in the ventral tegmental area.[3]

In 2015, Lundbeck sold its rights to the molecule to Ovid Therapeutics, whose plan is to develop it for FXS and Angelman syndrome.[4] It is known internally in Ovid as OV101.

Pharmacology

Gaboxadol is a supra-maximal agonist at α4β3δ GABAA receptors, low-potency agonist at α1β3γ2, and partial agonist at α4β3γ.[5][6] Its affinity for this α4-containing subtype of the GABAA receptor is 10× greater than other non-α4 containing subtypes.[7] Gaboxadol also has a unique affinity for extrasynaptic GABAA receptors, which desensitize more slowly and less extensively than synaptic GABAA receptors.[8]

See also

References

  1. ^ a b c Morris H (August 2013). "Gaboxadol". Harper's Magazine. Vol. August 2013. Retrieved 2014-11-20.
  2. ^ US Patent 4278676 - Heterocyclic compounds
  3. ^ Vashchinkina E, Panhelainen A, Vekovischeva OY, Aitta-aho T, Ebert B, Ator NA, Korpi ER (April 2012). "GABA site agonist gaboxadol induces addiction-predicting persistent changes in ventral tegmental area dopamine neurons but is not rewarding in mice or baboons". The Journal of Neuroscience. 32 (15): 5310–20. doi:10.1523/JNEUROSCI.4697-11.2012. PMC 6622081. PMID 22496576.
  4. ^ Tirrell M (16 April 2015). "Former Teva CEO's new gig at Ovid Therapeutics". CNBC. Retrieved 2015-05-06.
  5. ^ Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA (August 2002). "Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors". British Journal of Pharmacology. 136 (7): 965–974. doi:10.1038/sj.bjp.0704795. ISSN 0007-1188. PMC 1573424. PMID 12145096.
  6. ^ Orser BA (2006-04-15). "Extrasynaptic GABAA Receptors Are Critical Targets for Sedative-Hypnotic Drugs". Journal of Clinical Sleep Medicine. 02 (2). doi:10.5664/jcsm.26526. ISSN 1550-9389.
  7. ^ Rudolph U, Knoflach F (2011-07-29). "Beyond classical benzodiazepines: Novel therapeutic potential of GABAA receptor subtypes". Nature Reviews. Drug Discovery. 10 (9): 685–697. doi:10.1038/nrd3502. ISSN 1474-1776. PMC 3375401. PMID 21799515.
  8. ^ Orser BA (2006-04-15). "Extrasynaptic GABAA Receptors Are Critical Targets for Sedative-Hypnotic Drugs". Journal of Clinical Sleep Medicine. 02 (2). doi:10.5664/jcsm.26526. ISSN 1550-9389.

External links

  • 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  • H. Lundbeck Website
  • Medical News Today article
  • Report of cancellation of development.
  • Gaboxadol
  • v
  • t
  • e
GABAA
Alcohols
Barbiturates
Benzodiazepines
Carbamates
Imidazoles
Monoureides
Neuroactive steroids
Nonbenzodiazepines
Phenols
Piperidinediones
Quinazolinones
Others
GABABH1
Antihistamines
Antidepressants
Antipsychotics
α2-Adrenergic5-HT2A
Antidepressants
Antipsychotics
Others
MelatoninOrexinα2δ VDCCOthers
  • v
  • t
  • e
GABA receptor modulators
Ionotropic
GABAATooltip γ-Aminobutyric acid A receptor
GABAATooltip γ-Aminobutyric acid A-rho receptor
Metabotropic
GABABTooltip γ-Aminobutyric acid B receptor
See also
Receptor/signaling modulators
GABAA receptor positive modulators
GABA metabolism/transport modulators
  • v
  • t
  • e
Receptor
(ligands)
GlyRTooltip Glycine receptor
NMDARTooltip N-Methyl-D-aspartate receptor
  • See here instead.
Transporter
(blockers)
GlyT1Tooltip Glycine transporter 1
GlyT2Tooltip Glycine transporter 2
See also
Receptor/signaling modulators
GABA receptor modulators
GABAA receptor positive modulators
Ionotropic glutamate receptor modulators
Stub icon

This sedative-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e