Half-exponential function

In mathematics, a half-exponential function is a functional square root of an exponential function. That is, a function f {\displaystyle f} such that f {\displaystyle f} composed with itself results in an exponential function:[1][2]

f ( f ( x ) ) = a b x , {\displaystyle f{\bigl (}f(x){\bigr )}=ab^{x},}
for some constants a {\displaystyle a} and b {\displaystyle b} .

Impossibility of a closed-form formula

If a function f {\displaystyle f} is defined using the standard arithmetic operations, exponentials, logarithms, and real-valued constants, then f ( f ( x ) ) {\displaystyle f{\bigl (}f(x){\bigr )}} is either subexponential or superexponential.[3] Thus, a Hardy L-function cannot be half-exponential.

Construction

Any exponential function can be written as the self-composition f ( f ( x ) ) {\displaystyle f(f(x))} for infinitely many possible choices of f {\displaystyle f} . In particular, for every A {\displaystyle A} in the open interval ( 0 , 1 ) {\displaystyle (0,1)} and for every continuous strictly increasing function g {\displaystyle g} from [ 0 , A ] {\displaystyle [0,A]} onto [ A , 1 ] {\displaystyle [A,1]} , there is an extension of this function to a continuous strictly increasing function f {\displaystyle f} on the real numbers such that f ( f ( x ) ) = exp x {\displaystyle f{\bigl (}f(x){\bigr )}=\exp x} .[4] The function f {\displaystyle f} is the unique solution to the functional equation

f ( x ) = { g ( x ) if  x [ 0 , A ] , exp g 1 ( x ) if  x ( A , 1 ] , exp f ( ln x ) if  x ( 1 , ) , ln f ( exp x ) if  x ( , 0 ) . {\displaystyle f(x)={\begin{cases}g(x)&{\mbox{if }}x\in [0,A],\\\exp g^{-1}(x)&{\mbox{if }}x\in (A,1],\\\exp f(\ln x)&{\mbox{if }}x\in (1,\infty ),\\\ln f(\exp x)&{\mbox{if }}x\in (-\infty ,0).\\\end{cases}}}

Example of a half-exponential function

A simple example, which leads to f {\displaystyle f} having a continuous first derivative everywhere, is to take A = 1 2 {\displaystyle A={\tfrac {1}{2}}} and g ( x ) = x + 1 2 {\displaystyle g(x)=x+{\tfrac {1}{2}}} , giving

f ( x ) = { log e ( e x + 1 2 ) if  x log e 2 , e x 1 2 if  log e 2 x 0 , x + 1 2 if  0 x 1 2 , e x 1 / 2 if  1 2 x 1 , x e if  1 x e , e x / e if  e x e , x e if  e x e e , e x 1 / e if  e e x e e , {\displaystyle f(x)={\begin{cases}\log _{e}\left(e^{x}+{\tfrac {1}{2}}\right)&{\mbox{if }}x\leq -\log _{e}2,\\e^{x}-{\tfrac {1}{2}}&{\mbox{if }}{-\log _{e}2}\leq x\leq 0,\\x+{\tfrac {1}{2}}&{\mbox{if }}0\leq x\leq {\tfrac {1}{2}},\\e^{x-1/2}&{\mbox{if }}{\tfrac {1}{2}}\leq x\leq 1,\\x{\sqrt {e}}&{\mbox{if }}1\leq x\leq {\sqrt {e}},\\e^{x/{\sqrt {e}}}&{\mbox{if }}{\sqrt {e}}\leq x\leq e,\\x^{\sqrt {e}}&{\mbox{if }}e\leq x\leq e^{\sqrt {e}},\\e^{x^{1/{\sqrt {e}}}}&{\mbox{if }}e^{\sqrt {e}}\leq x\leq e^{e},\ldots \\\end{cases}}}

Application

Half-exponential functions are used in computational complexity theory for growth rates "intermediate" between polynomial and exponential.[2] A function f {\displaystyle f} grows at least as quickly as some half-exponential function (its composition with itself grows exponentially) if it is non-decreasing and f 1 ( x C ) = o ( log x ) {\displaystyle f^{-1}(x^{C})=o(\log x)} , for every C > 0 {\displaystyle C>0} .[5]

See also

  • Iterated function – Result of repeatedly applying a mathematical function
  • Schröder's equation – Equation for fixed point of functional composition
  • Abel equation – Equation for function that computes iterated values

References

  1. ^ Kneser, H. (1950). "Reelle analytische Lösungen der Gleichung φ(φ(x) = ex und verwandter Funktionalgleichungen". Journal für die reine und angewandte Mathematik. 187: 56–67. doi:10.1515/crll.1950.187.56. MR 0035385.
  2. ^ a b Miltersen, Peter Bro; Vinodchandran, N. V.; Watanabe, Osamu (1999). "Super-polynomial versus half-exponential circuit size in the exponential hierarchy". In Asano, Takao; Imai, Hiroshi; Lee, D. T.; Nakano, Shin-ichi; Tokuyama, Takeshi (eds.). Computing and Combinatorics, 5th Annual International Conference, COCOON '99, Tokyo, Japan, July 26–28, 1999, Proceedings. Lecture Notes in Computer Science. Vol. 1627. Springer. pp. 210–220. doi:10.1007/3-540-48686-0_21. ISBN 978-3-540-66200-6. MR 1730337.
  3. ^ van der Hoeven, J. (2006). Transseries and Real Differential Algebra. Lecture Notes in Mathematics. Vol. 1888. Springer-Verlag, Berlin. doi:10.1007/3-540-35590-1. ISBN 978-3-540-35590-8. MR 2262194. See exercise 4.10, p. 91, according to which every such function has a comparable growth rate to an exponential or logarithmic function iterated an integer number of times, rather than the half-integer that would be required for a half-exponential function.
  4. ^ Crone, Lawrence J.; Neuendorffer, Arthur C. (1988). "Functional powers near a fixed point". Journal of Mathematical Analysis and Applications. 132 (2): 520–529. doi:10.1016/0022-247X(88)90080-7. MR 0943525.
  5. ^ Razborov, Alexander A.; Rudich, Steven (1997). "Natural proofs". Journal of Computer and System Sciences. 55 (1): 24–35. doi:10.1006/jcss.1997.1494. MR 1473047.

External links

  • Does the exponential function have a (compositional) square root?
  • “Closed-form” functions with half-exponential growth