Haptocorrin

Protein-coding gene in the species Homo sapiens
TCN1
Available structures
PDBHuman UniProt search: PDBe RCSB
List of PDB id codes

4KKI, 4KKJ

Identifiers
AliasesTCN1, HC, TC-1, TC1, TCI, transcobalamin 1
External IDsOMIM: 189905 HomoloGene: 47985 GeneCards: TCN1
Gene location (Human)
Chromosome 11 (human)
Chr.Chromosome 11 (human)[1]
Chromosome 11 (human)
Genomic location for TCN1
Genomic location for TCN1
Band11q12.1Start59,852,800 bp[1]
End59,866,489 bp[1]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • pancreatic ductal cell

  • trachea

  • parotid gland

  • gallbladder

  • bone marrow

  • bone marrow cells

  • trabecular bone

  • minor salivary glands

  • pylorus

  • islet of Langerhans
    n/a
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
  • cobalamin binding
Cellular component
  • extracellular region
  • extracellular space
  • specific granule lumen
  • tertiary granule lumen
Biological process
  • cobalamin metabolic process
  • cobalt ion transport
  • ion transport
  • cobalamin transport
  • neutrophil degranulation
  • transport
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

6947

n/a

Ensembl

ENSG00000134827

n/a

UniProt

P20061

n/a

RefSeq (mRNA)

NM_001062

n/a

RefSeq (protein)

NP_001053

n/a

Location (UCSC)Chr 11: 59.85 – 59.87 Mbn/a
PubMed search[2]n/a
Wikidata
View/Edit Human

Haptocorrin (HC) also known as transcobalamin-1 (TC-1) or cobalophilin is a transcobalamin protein that in humans is encoded by the TCN1 gene.[3] One essential function of haptocorrin is protection of the acid-sensitive vitamin B12 while it moves through the stomach. A second function is serum HC binding of the great majority of circulating vitamin B12, rendering it unavailable for take-up by cells. This is conjectured to be a circulating storage function.

Functions

Haptocorrin (HC), also commonly known as the R-protein, or the R-factor, or previously referred to as transcobalamin I, is a unique glycoprotein produced by the salivary glands of the oral cavity, in response to ingestion of food. This protein binds strongly to vitamin B12 in what is an intricate and necessary mechanism to protect this vitamin from the acidic environment of the stomach.[4]: 44  Vitamin B12 is an essential water-soluble vitamin, the deficiency of which creates anemia (macrocytic anemia), decreased bone marrow cell production (anemia, pancytopenia), neurological problems, as well as metabolic issues (methylmalonyl-CoA acidosis).[4]: 50–51 

Vitamin B12 is therefore an important vitamin for the body to absorb. Despite its vital role however, vitamin B12 is structurally very sensitive to the hydrochloric acid found in the stomach secretions, and easily denatures in that environment before it has a chance to be absorbed by the small intestine. Found in fresh animal products (such as liver), vitamin B12 attaches haptocorrin, which has a high affinity for its molecular structure.[5] Coupled together vitamin B12 and haptocorrin create a complex. This haptocorrin–B12 complex is impervious to the insult of the stomach acid, and passes on via the pylorus to the duodenum. In the duodenum pancreatic proteases (a component of pancreatic juice) cleave haptocorrin, releasing vitamin B12 in its free form.

The same cells in the stomach that produce gastric hydrochloric acid, the parietal cells, also produce a molecule called the intrinsic factor (IF), which binds the B12 after its release from haptocorrin by digestion, and without which only 1% of vitamin B12 is absorbed. Intrinsic factor (IF) is a glycoprotein, with a molecular weight of 45 kDa. In the duodenum, the free vitamin B12 attaches to the intrinsic factor (IF) to create a vitamin B12–IF complex. This complex then travels through the small bowel and reaches the terminal tertiary portion of the small intestine, called the ileum. The ileum is the longest of all portions of the small intestine, and has on its surface specialized receptors called cubilin receptors, that identify the B12–IF complexes and take them up into the circulation via endocytosis-mediated absorption.[6]

Separate from the digestive absorption function, serum HC binds 80-90% of circulating B12, rendering it unavailable for cellular delivery by transcobalamin II. This is conjectured to be a circulating storage function.[7] Several serious, even life-threatening diseases cause elevated serum HC, measured as abnormally high serum vitamin B12 while at the same time manifesting as a vitamin deficiency because of insufficent vitamin bound to transcobalamin II.[8]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000134827 – Ensembl, May 2017
  2. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. ^ "Entrez Gene: transcobalamin I (vitamin B12 binding protein".
  4. ^ a b Pettit JD, Moss P (2006). Essential Haematology 5e (Essential). Blackwell Publishing Professional. p. 44. ISBN 1-4051-3649-9.
  5. ^ Morkbak AL, Poulsen SS, Nexo E (2007). "Haptocorrin in humans". Clinical Chemistry and Laboratory Medicine. 45 (12): 1751–9. doi:10.1515/CCLM.2007.343. PMID 17990953. S2CID 24204285.
  6. ^ Viola-Villegas N, Rabideau AE, Bartholomä M, Zubieta J, Doyle RP (Aug 2009). "Targeting the cubilin receptor through the vitamin B(12) uptake pathway: cytotoxicity and mechanistic insight through fluorescent Re(I) delivery". Journal of Medicinal Chemistry. 52 (16): 5253–61. doi:10.1021/jm900777v. PMID 19627091.
  7. ^ McCorvie TJ, Ferreira D, Yue WW, Froese DS (May 2023). "The complex machinery of human cobalamin metabolism". J Inherit Metab Dis. 46 (3): 406–20. doi:10.1002/jimd.12593. PMID 36680553.
  8. ^ Ermens AA, Vlasveld LT, Lindemans J (November 2003). "Significance of elevated cobalamin (vitamin B12) levels in blood". Clin Biochem. 36 (8): 585–90. doi:10.1016/j.clinbiochem.2003.08.004. PMID 14636871.

Further reading

  • Guéant-Rodriguez RM, Juilliére Y, Candito M, Adjalla CE, Gibelin P, Herbeth B, Van Obberghen E, Gueánt JL (Sep 2005). "Association of MTRRA66G polymorphism (but not of MTHFR C677T and A1298C, MTRA2756G, TCN C776G) with homocysteine and coronary artery disease in the French population". Thrombosis and Haemostasis. 94 (3): 510–5. doi:10.1160/TH05-04-0262. PMID 16268464. S2CID 33572371.
  • Garrod MG, Allen LH, Haan MN, Green R, Miller JW (May 2010). "Transcobalamin C776G genotype modifies the association between vitamin B12 and homocysteine in older Hispanics". European Journal of Clinical Nutrition. 64 (5): 503–9. doi:10.1038/ejcn.2010.20. PMC 2864787. PMID 20216556.
  • McGeachie M, Ramoni RL, Mychaleckyj JC, Furie KL, Dreyfuss JM, Liu Y, Herrington D, Guo X, Lima JA, Post W, Rotter JI, Rich S, Sale M, Ramoni MF (Dec 2009). "Integrative predictive model of coronary artery calcification in atherosclerosis". Circulation. 120 (24): 2448–54. doi:10.1161/CIRCULATIONAHA.109.865501. PMC 2810344. PMID 19948975.
  • Matteini AM, Walston JD, Bandeen-Roche K, Arking DE, Allen RH, Fried LP, Chakravarti A, Stabler SP, Fallin MD (Jan 2010). "Transcobalamin-II variants, decreased vitamin B12 availability and increased risk of frailty". The Journal of Nutrition, Health & Aging. 14 (1): 73–7. doi:10.1007/s12603-010-0013-1. PMC 3042247. PMID 20082058.
  • Lee KM, Lan Q, Kricker A, Purdue MP, Grulich AE, Vajdic CM, Turner J, Whitby D, Kang D, Chanock S, Rothman N, Armstrong BK (Dec 2007). "One-carbon metabolism gene polymorphisms and risk of non-Hodgkin lymphoma in Australia". Human Genetics. 122 (5): 525–33. doi:10.1007/s00439-007-0431-2. PMID 17891500. S2CID 21487646.
  • Liu T, Qian WJ, Gritsenko MA, Camp DG, Monroe ME, Moore RJ, Smith RD (2005). "Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry". Journal of Proteome Research. 4 (6): 2070–80. doi:10.1021/pr0502065. PMC 1850943. PMID 16335952.
  • Fintelman-Rodrigues N, Corrêa JC, Santos JM, Pimentel MM, Santos-Rebouças CB (2009). "Investigation of CBS, MTR, RFC-1 and TC polymorphisms as maternal risk factors for Down syndrome". Disease Markers. 26 (4): 155–61. doi:10.1155/2009/504625. PMC 3833707. PMID 19729796.
  • Wang SS, Maurer MJ, Morton LM, Habermann TM, Davis S, Cozen W, Lynch CF, Severson RK, Rothman N, Chanock SJ, Hartge P, Cerhan JR (Mar 2009). "Polymorphisms in DNA repair and one-carbon metabolism genes and overall survival in diffuse large B-cell lymphoma and follicular lymphoma". Leukemia. 23 (3): 596–602. doi:10.1038/leu.2008.240. PMC 3066015. PMID 18830263.
  • Fedosov SN, Fedosova NU, Kräutler B, Nexø E, Petersen TE (May 2007). "Mechanisms of discrimination between cobalamins and their natural analogues during their binding to the specific B12-transporting proteins". Biochemistry. 46 (21): 6446–58. doi:10.1021/bi062063l. PMID 17487979.
  • Carmel R, Parker J, Kelman Z (Nov 2009). "Genomic mutations associated with mild and severe deficiencies of transcobalamin I (haptocorrin) that cause mildly and severely low serum cobalamin levels". British Journal of Haematology. 147 (3): 386–91. doi:10.1111/j.1365-2141.2009.07855.x. PMID 19686235. S2CID 20530258.
  • Talmud PJ, Drenos F, Shah S, Shah T, Palmen J, Verzilli C, Gaunt TR, Pallas J, Lovering R, Li K, Casas JP, Sofat R, Kumari M, Rodriguez S, Johnson T, Newhouse SJ, Dominiczak A, Samani NJ, Caulfield M, Sever P, Stanton A, Shields DC, Padmanabhan S, Melander O, Hastie C, Delles C, Ebrahim S, Marmot MG, Smith GD, Lawlor DA, Munroe PB, Day IN, Kivimaki M, Whittaker J, Humphries SE, Hingorani AD (Nov 2009). "Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip". American Journal of Human Genetics. 85 (5): 628–42. doi:10.1016/j.ajhg.2009.10.014. PMC 2775832. PMID 19913121.
  • Collin SM, Metcalfe C, Refsum H, Lewis SJ, Smith GD, Cox A, Davis M, Marsden G, Johnston C, Lane JA, Donovan JL, Neal DE, Hamdy FC, Smith AD, Martin RM (Nov 2010). "Associations of folate, vitamin B12, homocysteine, and folate-pathway polymorphisms with prostate-specific antigen velocity in men with localized prostate cancer". Cancer Epidemiology, Biomarkers & Prevention. 19 (11): 2833–8. doi:10.1158/1055-9965.EPI-10-0582. PMID 20852008.
  • Haggarty P, Campbell DM, Duthie S, Andrews K, Hoad G, Piyathilake C, Fraser I, McNeill G (Jun 2008). "Folic acid use in pregnancy and embryo selection". BJOG. 115 (7): 851–6. doi:10.1111/j.1471-0528.2008.01737.x. PMID 18485163. S2CID 27260053.
  • Tanaka T, Scheet P, Giusti B, Bandinelli S, Piras MG, Usala G, Lai S, Mulas A, Corsi AM, Vestrini A, Sofi F, Gori AM, Abbate R, Guralnik J, Singleton A, Abecasis GR, Schlessinger D, Uda M, Ferrucci L (Apr 2009). "Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations". American Journal of Human Genetics. 84 (4): 477–82. doi:10.1016/j.ajhg.2009.02.011. PMC 2667971. PMID 19303062.
  • Geisel J, Hübner U, Bodis M, Schorr H, Knapp JP, Obeid R, Herrmann W (Nov 2003). "The role of genetic factors in the development of hyperhomocysteinemia". Clinical Chemistry and Laboratory Medicine. 41 (11): 1427–34. doi:10.1515/CCLM.2003.219. PMID 14656021. S2CID 24720114.
  • Martinelli M, Scapoli L, Palmieri A, Pezzetti F, Baciliero U, Padula E, Carinci P, Morselli PG, Carinci F (Mar 2006). "Study of four genes belonging to the folate pathway: transcobalamin 2 is involved in the onset of non-syndromic cleft lip with or without cleft palate". Human Mutation. 27 (3): 294. doi:10.1002/humu.9411. PMID 16470748. S2CID 39925478.
  • von Castel-Dunwoody KM, Kauwell GP, Shelnutt KP, Vaughn JD, Griffin ER, Maneval DR, Theriaque DW, Bailey LB (Jun 2005). "Transcobalamin 776C->G polymorphism negatively affects vitamin B-12 metabolism". The American Journal of Clinical Nutrition. 81 (6): 1436–41. doi:10.1093/ajcn/81.6.1436. PMID 15941899.
  • Oh JH, Yang JO, Hahn Y, Kim MR, Byun SS, Jeon YJ, Kim JM, Song KS, Noh SM, Kim S, Yoo HS, Kim YS, Kim NS (Dec 2005). "Transcriptome analysis of human gastric cancer". Mammalian Genome. 16 (12): 942–54. doi:10.1007/s00335-005-0075-2. PMID 16341674. S2CID 69278.
  • Ramachandran P, Boontheung P, Xie Y, Sondej M, Wong DT, Loo JA (Jun 2006). "Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry". Journal of Proteome Research. 5 (6): 1493–503. doi:10.1021/pr050492k. PMID 16740002.
  • Bailey SD, Xie C, Do R, Montpetit A, Diaz R, Mohan V, Keavney B, Yusuf S, Gerstein HC, Engert JC, Anand S (Oct 2010). "Variation at the NFATC2 locus increases the risk of thiazolidinedione-induced edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) study". Diabetes Care. 33 (10): 2250–3. doi:10.2337/dc10-0452. PMC 2945168. PMID 20628086.