Hazard analysis

The identification of present hazards as the first step in a process to assess risk

A hazard analysis is used as the first step in a process used to assess risk. The result of a hazard analysis is the identification of different types of hazards. A hazard is a potential condition and exists or not (probability is 1 or 0). It may, in single existence or in combination with other hazards (sometimes called events) and conditions, become an actual Functional Failure or Accident (Mishap). The way this exactly happens in one particular sequence is called a scenario. This scenario has a probability (between 1 and 0) of occurrence. Often a system has many potential failure scenarios. It also is assigned a classification, based on the worst case severity of the end condition. Risk is the combination of probability and severity. Preliminary risk levels can be provided in the hazard analysis. The validation, more precise prediction (verification) and acceptance of risk is determined in the risk assessment (analysis). The main goal of both is to provide the best selection of means of controlling or eliminating the risk. The term is used in several engineering specialties, including avionics, food safety, occupational safety and health, process safety, reliability engineering.

Hazards and risk

A hazard is defined as a "Condition, event, or circumstance that could lead to or contribute to an unplanned or undesirable event." Seldom does a single hazard cause an accident or a functional failure. More often an accident or operational failure occurs as the result of a sequence of causes. A hazard analysis will consider system state, for example operating environment, as well as failures or malfunctions.

While in some cases, safety or reliability risk can be eliminated, in most cases a certain degree of risk must be accepted. In order to quantify expected costs before the fact, the potential consequences and the probability of occurrence must be considered. Assessment of risk is made by combining the severity of consequence with the likelihood of occurrence in a matrix. Risks that fall into the "unacceptable" category (e.g., high severity and high probability) must be mitigated by some means to reduce the level of safety risk.

IEEE STD-1228-1994 Software Safety Plans prescribes industry best practices for conducting software safety hazard analyses to help ensure safety requirements and attributes are defined and specified for inclusion in software that commands, controls or monitors critical functions. When software is involved in a system, the development and design assurance of that software is often governed by DO-178C. The severity of consequence identified by the hazard analysis establishes the criticality level of the software. Software criticality levels range from A to E, corresponding to the severity of Catastrophic to No Safety Effect. Higher levels of rigor are required for level A and B software and corresponding functional tasks and work products is the system safety domain are used as objective evidence of meeting safety criteria and requirements.

In 2009[1] a leading edge commercial standard was promulgated based on decades of proven system safety processes in DoD and NASA. ANSI/GEIA-STD-0010-2009 (Standard Best Practices for System Safety Program Development and Execution) is a demilitarized commercial best practice that uses proven holistic, comprehensive and tailored approaches for hazard prevention, elimination and control. It is centered around the hazard analysis and functional based safety process.

Severity definitions - Safety Related examples

(aviation)

Severity Definition
Catastrophic Results in multiple fatalities and/or loss of the system
Hazardous Reduces the capability of the system or the operator ability to cope with adverse conditions to the extent that there would be:
  • Large reduction in safety margin or functional capability
  • Crew physical distress/excessive workload such that operators cannot be relied upon to perform required tasks accurately or completely
  • Serious or fatal injury to small number of occupants of aircraft (except operators)
  • Fatal injury to ground personnel and/or general public
Major Reduces the capability of the system or the operators to cope with adverse operating conditions to the extent that there would be:
  • Significant reduction in safety margin or functional capability
  • Significant increase in operator workload
  • Conditions impairing operator efficiency or creating significant discomfort
  • Physical distress to occupants of aircraft (except operator) including injuries
  • Major occupational illness and/or major environmental damage, and/or major property damage
Minor Does not significantly reduce system safety. Actions required by operators are well within their capabilities. Include:
  • Slight reduction in safety margin or functional capabilities
  • Slight increase in workload such as routine flight plan changes
  • Some physical discomfort to occupants or aircraft (except operators)
  • Minor occupational illness and/or minor environmental damage, and/or minor property damage
No Safety Effect Has no effect on safety


(medical devices)

Severity Definition
Catastrophic Results in death
Critical Results in permanent impairment or life-threatening injury
Serious Results in injury or impairment requiring professional medical intervention
Minor Results in temporary injury or impairment not requiring professional medical intervention
Negligible Results in temporary discomfort or inconvenience

Likelihood of occurrence examples

(aviation)

Likelihood Definition
Probable
  • Qualitative: Anticipated to occur one or more times during the entire system/operational life of an item.
  • Quantitative: Probability of occurrence per operational hour is greater than 1 × 10 5 {\displaystyle 1\times 10^{-5}}
Remote
  • Qualitative: Unlikely to occur to each item during its total life. May occur several times in the life of an entire system or fleet.
  • Quantitative: Probability of occurrence per operational hour is less than 1 × 10 5 {\displaystyle 1\times 10^{-5}} , but greater than 1 × 10 7 {\displaystyle 1\times 10^{-7}}
Extremely Remote
  • Qualitative: Not anticipated to occur to each item during its total life. May occur a few times in the life of an entire system or fleet.
  • Quantitative: Probability of occurrence per operational hour is less than 1 × 10 7 {\displaystyle 1\times 10^{-7}} but greater than 1 × 10 9 {\displaystyle 1\times 10^{-9}}
Extremely Improbable
  • Qualitative: So unlikely that it is not anticipated to occur during the entire operational life of an entire system or fleet.
  • Quantitative: Probability of occurrence per operational hour is less than 1 × 10 9 {\displaystyle 1\times 10^{-9}}


(medical devices)

Likelihood Definition
Frequent ≥ 10−3
Probable < 10−3 and ≥ 10−4
Occasional < 10−4 and ≥ 10−5
Remote < 10−5 and ≥ 10−6
Improbable < 10−6

See also

  • Environmental hazard
  • Medical Device Risk Management - ISO 14971 – ISO standard
  • Failure mode and effects analysis – Analysis of potential system failures
  • Fault tree analysis – Failure analysis system used in safety engineering and reliability engineering
  • Hazard and operability study (HAZOP) – Study of risks in a plan or operation
  • Structured What If Technique (SWIFT) – Method of prospective hazards analysisPages displaying short descriptions of redirect targets
  • Layers of protection analysis (LOPA) – Technique for evaluating the hazards, risks and layers of protection of a system
  • Safety engineering – Engineering discipline which assures that engineered systems provide acceptable levels of safety
  • Reliability engineering – Sub-discipline of systems engineering that emphasizes dependability
  • Occupational safety and health – Field concerned with the safety, health and welfare of people at work
  • RTCA DO-178B – RTCA standard for safety-critical software (Software Considerations in Airborne Systems and Equipment Certification)
  • RTCA DO-178C – International aeronautics software standard
  • RTCA DO-254 – Document for guidance of airborne electronic hardware (similar to DO-178B, but for hardware)
  • SAE ARP4761 – aerospace recommended practicePages displaying wikidata descriptions as a fallback (System safety assessment process)
  • SAE ARP4754 (System development process)

Further reading

  • Center for Chemical Process Safety (1992). Guidelines for Hazard Evaluation Procedures, with Worked Examples (2nd ed.). Wiley-American Institute Of Chemical Engineers. ISBN 0-8169-0491-X.
  • Bahr, Nicholas J. (1997). System Safety Engineering and Risk Assessment: A Practical Approach (Chemical Engineering) (1st ed.). Taylor & Francis Group. ISBN 1-56032-416-3.
  • Kletz, Trevor (1999). Hazop and Hazan (4th ed.). Taylor & Francis. ISBN 0-85295-421-2.

References

  1. ^ "Joint Software Systems Safety Engineering Handbook" (PDF). Naval Ordnance Safety and Security Activity. Retrieved 25 August 2021.

External links

  • CFR, Title 29-Labor, Part 1910--Occupational Safety and Health Standards, § 1910.119
    U.S. OSHA regulations regarding "Process safety management of highly hazardous chemicals" (especially Appendix C).
  • FAA Order 8040.4 establishes FAA safety risk management policy.
  • The FAA publishes a System Safety Handbook that provides a good overview of the system safety process used by the agency.
  • IEEE 1584-2002 Standard which provides guidelines for doing arc flash hazard assessment.
  • v
  • t
  • e
Occupational
diseases
and injuriesOccupational
hygieneProfessionsAgencies and
organizations
International
National
StandardsSafetyLegislationSee also
  • Category
    • Occupational diseases
    • Journals
    • Organizations
  • Commons
  • Glossary
  • v
  • t
  • e
Basic equipment
Breathing gas
Buoyancy and
trim equipment
Decompression
equipment
Diving suit
Helmets
and masks
Instrumentation
Mobility
equipment
Safety
equipment
Underwater
breathing
apparatus
Open-circuit
scuba
Diving rebreathers
Surface-supplied
diving equipment
Diving
equipment
manufacturers
Access equipment
Breathing gas
handling
Decompression
equipment
Platforms
Underwater
habitat
Remotely operated
underwater vehicles
Safety equipment
General
Activities
Competitions
Equipment
Freedivers
Hazards
Historical
Organisations
Occupations
Military
diving
Military
diving
units
Underwater
work
Salvage diving
  • SS Egypt
  • Kronan
  • La Belle
  • SS Laurentic
  • RMS Lusitania
  • Mars
  • Mary Rose
  • USS Monitor
  • HMS Royal George
  • Vasa
Diving
contractors
Tools and
equipment
Underwater
weapons
Underwater
firearm
Specialties
Diver
organisations
Diving tourism
industry
Diving events
and festivals
Diving
hazards
Consequences
Diving
procedures
Risk
management
Diving team
Equipment
safety
Occupational
safety and
health
Diving
disorders
Pressure
related
Oxygen
Inert gases
Carbon dioxide
Breathing gas
contaminants
Immersion
related
Treatment
Personnel
Screening
Research
Researchers in
diving physiology
and medicine
Diving medical
research
organisations
Law
Archeological
sites
Underwater art
and artists
Engineers
and inventors
Historical
equipment
Diver
propulsion
vehicles
Military and
covert operations
  • Raid on Alexandria (1941)
  • Sinking of the Rainbow Warrior
Scientific projects
Awards and events
Incidents
Dive boat incidents
  • Sinking of MV Conception
Diver rescues
Early diving
Freediving fatalities
Offshore
diving incidents
  • Byford Dolphin diving bell accident
  • Drill Master diving accident
  • Star Canopus diving accident
  • Stena Seaspread diving accident
  • Venture One diving accident
  • Waage Drill II diving accident
  • Wildrake diving accident
Professional
diving fatalities
Scuba diving
fatalities
Publications
Manuals
  • NOAA Diving Manual
  • U.S. Navy Diving Manual
  • Basic Cave Diving: A Blueprint for Survival
  • Underwater Handbook
  • Bennett and Elliott's physiology and medicine of diving
  • Encyclopedia of Recreational Diving
  • The new science of skin and scuba diving
  • Professional Diver's Handbook
  • Basic Scuba
Standards and
Codes of Practice
General non-fiction
Research
Dive guides
Training and registration
Diver
training
Skills
Recreational
scuba
certification
levels
Core diving skills
Leadership skills
Specialist skills
Diver training
certification
and registration
organisations
Commercial diver
certification
authorities
Commercial diving
schools
Free-diving
certification
agencies
Recreational
scuba
certification
agencies
Scientific diver
certification
authorities
Technical diver
certification
agencies
Cave
diving
Military diver
training centres
Military diver
training courses
Surface snorkeling
Snorkeling/breath-hold
Breath-hold
Open Circuit Scuba
Rebreather
  • Underwater photography
Sports governing
organisations
and federations
Competitions
Pioneers
of diving
Underwater
scientists
archaeologists and
environmentalists
Scuba record
holders
Underwater
filmmakers
and presenters
Underwater
photographers
Underwater
explorers
Aquanauts
Writers and journalists
Rescuers
Frogmen
Commercial salvors
Diving
physics
Diving
physiology
Decompression
theory
Diving
environment
Classification
Impact
Other
Deep-submergence
vehicle
  • Aluminaut
  • DSV Alvin
  • American submarine NR-1
  • Bathyscaphe
    • Archimède
    • FNRS-2
    • FNRS-3
    • Harmony class bathyscaphe
    • Sea Pole-class bathyscaphe
    • Trieste II
  • Deepsea Challenger
  • Ictineu 3
  • JAGO
  • Jiaolong
  • Konsul-class submersible
  • Limiting Factor
  • Russian submarine Losharik
  • Mir
  • Nautile
  • Pisces-class deep submergence vehicle
  • DSV Sea Cliff
  • DSV Shinkai
  • DSV Shinkai 2000
  • DSV Shinkai 6500
  • DSV Turtle
  • DSV-5 Nemo
Submarine rescue
Deep-submergence
rescue vehicle
Submarine escape
Escape set
Special
interest
groups
Neutral buoyancy
facilities for
Astronaut training
Other