Hazardous Materials Identification System

Numerical hazard rating using colour coded labels
A sample HMIS Color Bar

The Hazardous Materials Identification System (HMIS) is a numerical hazard rating that incorporates the use of labels with color developed by the American Coatings Association as a compliance aid for the OSHA Hazard Communication (HazCom) Standard.[1][2]

HMIS Color Bar

The HMIS Color Bar is similar to the safety square, created by the National Fire Protection Association (NFPA). Before 2002 the safety square and the color bar both had sections colored blue, red, white, and yellow. After April 2002, with the release of HMIS III, yellow in the color bar (which stood for reactivity) was replaced by orange, standing for physical hazard. The safety square is designed for emergencies when information about the effects of short, or acute, exposure is needed. The color bar is not for emergencies and is used to convey broader health warning information. Both systems were developed at a time when there was no mandated labeling system for communicating hazards of workplace chemicals (OSHA only required some system be used without specifying a format). In 2012, OSHA introduced an updated version of their HazCom standard known as HazCom 2012, which mandates GHS Labels on shipped containers, and updated requirements for workplace labels, which are compatible with GHS, although it does not mandate the use of GHS in the workplace. HMIS Color Bar is compliant with these new standards. Specifically, when using HMIS III, which accounts for the increased flammability hazard of aerosols.[3]

Symbols

The four bars are color-coded, using the modern color bar symbols with blue indicating the level of health hazard, red for flammability, orange for a physical hazard, and white for Personal Protection. The number ratings range from 0 to 4.

Blue (Health)

The Health section conveys the health hazards of the material. In the latest version of HMIS, the Health bar has two spaces, one for an asterisk and one for a numeric hazard rating. If present, the asterisk signifies a chronic health hazard, meaning that long-term exposure to the material could cause a health problem such as emphysema or kidney damage. According to NPCA, the numeric hazard assessment procedure differs from that used by NFPA.[4]

  • 4.  Life-threatening, major or permanent damage may result from single or repeated overexposures (e.g., hydrogen cyanide).
  • 3.  Major injury likely unless prompt action is taken and medical treatment is given.
  • 2.  Temporary or minor injury may occur (e.g., diethyl ether).
  • 1.  Irritation or minor reversible injury possible.
  • 0.  No significant risk to health.

Red (Flammability)

For HMIS I and II, the criteria used to assign numeric values (0 = low hazard to 4 = high hazard) are identical to those used by NFPA. In other words, in this category, HMIS I & II are identical to NFPA.[4] For HMIS III, the flammability criteria are defined according to OSHA standards (which add elevated flammability ratings for aerosols).[5] (HMIS II descriptions, excluding the new aerosol criteria, are shown below)

  • 4.  Flammable gases, or very volatile flammable liquids with flash points below 73 °F (23 °C), and boiling points below 100 °F (38 °C). Materials may ignite spontaneously with air (e.g., propane).
  • 3.  Materials capable of ignition under almost all normal temperature conditions. Includes flammable liquids with flash points below 73 °F (23 °C) and boiling points above 100 °F (38 °C), as well as liquids with flash points between 73 °F and 100 °F.
  • 2.  Materials which must be moderately heated or exposed to high ambient temperatures before ignition will occur. Includes liquids having a flash point at or above 100 °F (38 °C) but below 200 °F (93 °C) (e.g., diesel fuel).
  • 1.  Materials that must be preheated before ignition will occur. Includes liquids, solids and semi solids having a flash point above 200 °F (93 °C) (e.g., canola oil).
  • 0.  Materials that will not burn (e.g., Water).

Yellow/Orange (Reactivity/Physical Hazard)

Reactivity hazards are assessed using the OSHA criterion of physical hazard. Seven such hazard classes are recognized: Water Reactives, Organic Peroxides, Explosives, Compressed gases, Pyrophoric materials, Oxidizers, and Unstable Reactives. The numerical ratings are very similar to NFPA's yellow "Reactivity/Instability" rating according to the publicly available data, which is limited to "hazard statements" intended to accompany each rating (as shown below).[6] However, HMIS is a proprietary system, and without referring to the actual criteria for each rating, it is not clear how similar they are.

  • 4.  Materials that are readily capable of explosive water reaction, detonation or explosive decomposition, polymerization, or self-reaction at normal temperature and pressure (e.g., chlorine dioxide, nitroglycerin).
  • 3.  Materials that may form explosive mixtures with water and are capable of detonation or explosive reaction in the presence of a strong initiating source. Materials may polymerize, decompose, self-react, or undergo other chemical change at normal temperature and pressure with moderate risk of explosion (e.g., ammonium nitrate).
  • 2.  Materials that are unstable and may undergo violent chemical changes at normal temperature and pressure with low risk for explosion. Materials may react violently with water or form peroxides upon exposure to air (e.g., potassium, sodium).
  • 1.  Materials that are normally stable but can become unstable (self-react) at high temperatures and pressures. Materials may react non-violently with water or undergo hazardous polymerization in the absence of inhibitors (e.g., propene).
  • 0.  Materials that are normally stable, even under fire conditions, and will not react with water, polymerize, decompose, condense, or self-react. Non-explosives (e.g., helium).

White (Personal Protection)

This is by far the largest area of difference between the NFPA and HMIS systems. In the NFPA system, the white area is used to convey special hazards whereas HMIS uses the white section to indicate which personal protective equipment (PPE) should be used when working with the material.[7][8]

  • X. ask supervisor or safety specialist for handling instructions, or refer to the MSDS sheet for specific directions
  • K. airline hood or mask, gloves, full suit and boots
  • J. splash goggles, gloves, apron and a dust/vapor respirator
  • I. safety glasses, gloves and a dust/vapor respirator
  • H. splash goggles, gloves, apron and a vapor respirator
  • G. safety glasses, a vapor respirator
  • F. safety glasses, gloves, apron and a dust respirator
  • E. safety glasses, gloves and a dust respirator
  • D. face shield, gloves and an apron
  • C. safety glasses, gloves and an apron
  • B. safety glasses and gloves
  • A. safety glasses

See also

  • Emergency Response Guidebook
  • Fire Diamond (NFPA 704) – Hazard symbol used by emergency personnel to identify the risks posed by hazardous materials
  • Hazmat – Solids, liquids, or gases harmful to people, other organisms, property or the environment

References

  1. ^ HMIS®, American Coatings Association
  2. ^ OSHA Standard 1910.1200
  3. ^ "NFPA, HMIS and OSHA's GHS Aligned Hazard Communication Standard | MSDSonline". MSDSonline. 2013-05-17. Retrieved 2018-05-21.
  4. ^ a b Serna, Steve. "Hazard Communication (Hazcom) symbols" (PDF). udallas.edu. Retrieved 2022-08-08.
  5. ^ "Archived copy" (PDF). www.lpslabs.com. Archived from the original (PDF) on 22 May 2018. Retrieved 11 January 2022.{{cite web}}: CS1 maint: archived copy as title (link)
  6. ^ "How to use an HMIS Label" (PDF). mica.edu. Retrieved 2022-08-08.
  7. ^ "The MSDS HyperGlossary: HMIS". Interactive Learning Paradigms Incorporated (ILPI). October 29, 2018. Retrieved 4 August 2019. Includes a guide to personal protection.{{cite web}}: CS1 maint: postscript (link)
  8. ^ https://safetytoolboxtopics.com/PPE/hmis-label-ppe-codes-2.html

External links

  • Occupational Safety and Health Administration
  • Safety Stripes Podcast
  • v
  • t
  • e
Occupational
diseases
and injuriesOccupational
hygieneProfessionsAgencies and
organizations
International
National
StandardsSafetyLegislationSee also
  • Category
    • Occupational diseases
    • Journals
    • Organizations
  • Commons
  • Glossary
  • v
  • t
  • e
Basic equipment
Breathing gas
Buoyancy and
trim equipment
Decompression
equipment
Diving suit
Helmets
and masks
Instrumentation
Mobility
equipment
Safety
equipment
Underwater
breathing
apparatus
Open-circuit
scuba
Diving rebreathers
Surface-supplied
diving equipment
Diving
equipment
manufacturers
Access equipment
Breathing gas
handling
Decompression
equipment
Platforms
Underwater
habitat
Remotely operated
underwater vehicles
Safety equipment
General
Activities
Competitions
Equipment
Freedivers
Hazards
Historical
Organisations
Occupations
Military
diving
Military
diving
units
Underwater
work
Salvage diving
  • SS Egypt
  • Kronan
  • La Belle
  • SS Laurentic
  • RMS Lusitania
  • Mars
  • Mary Rose
  • USS Monitor
  • HMS Royal George
  • Vasa
Diving
contractors
Tools and
equipment
Underwater
weapons
Underwater
firearm
Specialties
Diver
organisations
Diving tourism
industry
Diving events
and festivals
Diving
hazards
Consequences
Diving
procedures
Risk
management
Diving team
Equipment
safety
Occupational
safety and
health
Diving
disorders
Pressure
related
Oxygen
Inert gases
Carbon dioxide
Breathing gas
contaminants
Immersion
related
Treatment
Personnel
Screening
Research
Researchers in
diving physiology
and medicine
Diving medical
research
organisations
Law
Archeological
sites
Underwater art
and artists
Engineers
and inventors
Historical
equipment
Diver
propulsion
vehicles
Military and
covert operations
  • Raid on Alexandria (1941)
  • Sinking of the Rainbow Warrior
Scientific projects
Awards and events
Incidents
Dive boat incidents
  • Sinking of MV Conception
Diver rescues
Early diving
Freediving fatalities
Offshore
diving incidents
  • Byford Dolphin diving bell accident
  • Drill Master diving accident
  • Star Canopus diving accident
  • Stena Seaspread diving accident
  • Venture One diving accident
  • Waage Drill II diving accident
  • Wildrake diving accident
Professional
diving fatalities
Scuba diving
fatalities
Publications
Manuals
  • NOAA Diving Manual
  • U.S. Navy Diving Manual
  • Basic Cave Diving: A Blueprint for Survival
  • Underwater Handbook
  • Bennett and Elliott's physiology and medicine of diving
  • Encyclopedia of Recreational Diving
  • The new science of skin and scuba diving
  • Professional Diver's Handbook
  • Basic Scuba
Standards and
Codes of Practice
General non-fiction
Research
Dive guides
Training and registration
Diver
training
Skills
Recreational
scuba
certification
levels
Core diving skills
Leadership skills
Specialist skills
Diver training
certification
and registration
organisations
Commercial diver
certification
authorities
Commercial diving
schools
Free-diving
certification
agencies
Recreational
scuba
certification
agencies
Scientific diver
certification
authorities
Technical diver
certification
agencies
Cave
diving
Military diver
training centres
Military diver
training courses
Surface snorkeling
Snorkeling/breath-hold
Breath-hold
Open Circuit Scuba
Rebreather
  • Underwater photography
Sports governing
organisations
and federations
Competitions
Pioneers
of diving
Underwater
scientists
archaeologists and
environmentalists
Scuba record
holders
Underwater
filmmakers
and presenters
Underwater
photographers
Underwater
explorers
Aquanauts
Writers and journalists
Rescuers
Frogmen
Commercial salvors
Diving
physics
Diving
physiology
Decompression
theory
Diving
environment
Classification
Impact
Other
Deep-submergence
vehicle
  • Aluminaut
  • DSV Alvin
  • American submarine NR-1
  • Bathyscaphe
    • Archimède
    • FNRS-2
    • FNRS-3
    • Harmony class bathyscaphe
    • Sea Pole-class bathyscaphe
    • Trieste II
  • Deepsea Challenger
  • Ictineu 3
  • JAGO
  • Jiaolong
  • Konsul-class submersible
  • Limiting Factor
  • Russian submarine Losharik
  • Mir
  • Nautile
  • Pisces-class deep submergence vehicle
  • DSV Sea Cliff
  • DSV Shinkai
  • DSV Shinkai 2000
  • DSV Shinkai 6500
  • DSV Turtle
  • DSV-5 Nemo
Submarine rescue
Deep-submergence
rescue vehicle
Submarine escape
Escape set
Special
interest
groups
Neutral buoyancy
facilities for
Astronaut training
Other