High Energy Astronomy Observatory 3

HEAO-3
Mission typeAstronomy
OperatorNASA
COSPAR ID1979-082A Edit this at Wikidata
SATCAT no.11532
Spacecraft properties
ManufacturerTRW
Dry mass2,660.2 kilograms (5,865 lb)
Start of mission
Launch date20 September 1979, 05:27:00 (1979-09-20UTC05:27) UTC
RocketAtlas SLV-3D Centaur-D1AR
Launch siteCape Canaveral LC-36B
End of mission
Decay date7 December 1981 (1981-12-08)
Orbital parameters
Reference systemGeocentric
RegimeLow Earth
Eccentricity0.00134
Perigee altitude486.4 kilometres (302.2 mi)
Apogee altitude504.9 kilometres (313.7 mi)
Inclination43.6°
Period94.50 minutes
 
Diagram of HEAO 3 Satellite

The last of NASA's three High Energy Astronomy Observatories, HEAO 3 was launched 20 September 1979 on an Atlas-Centaur launch vehicle, into a nearly circular, 43.6 degree inclination low Earth orbit with an initial perigeum of 486.4 km. The normal operating mode was a continuous celestial scan, spinning approximately once every 20 min about the spacecraft z-axis, which was nominally pointed at the Sun. Total mass of the observatory at launch was 2,660.0 kilograms (5,864.3 lb).[1]

HEAO 3 included three scientific instruments: the first a cryogenic high-resolution germanium gamma-ray spectrometer, and two devoted to cosmic-ray observations. The scientific objectives of the mission's three experiments were:

(1) to study intensity, spectrum, and time behavior of X-ray and gamma-ray sources between 0.06 and 10 MeV; measure isotropy of the diffuse X-ray and gamma-ray background; and perform an exploratory search for X-and gamma-ray line emissions;
(2) to determine the isotopic composition of the most abundant components of the cosmic-ray flux with atomic mass between 7 and 56, and the flux of each element with atomic number (Z) between Z = 4 and Z = 50;
(3) to search for super-heavy nuclei up to Z = 120 and measure the composition of the nuclei with Z >20.

The Gamma-ray Line Spectrometer Experiment

HEAO 3 in the clean room

The HEAO "C-1" instrument (as it was known before launch) was a sky-survey experiment, operating in the hard X-ray and low-energy gamma-ray bands. The gamma-ray spectrometer was especially designed to search for the 511 keV gamma-ray line produced by the annihilation of positrons in stars, galaxies, and the interstellar medium (ISM), nuclear gamma-ray line emission expected from the interactions of cosmic rays in the ISM, the radioactive products of cosmic nucleosynthesis, and nuclear reactions due to low-energy cosmic rays. In addition, careful study was made of the spectral and time variations of known hard X-ray sources.

The experimental package contained four cooled, p-type high-purity Ge gamma-ray detectors with a total volume of about 100 cm 3 {\displaystyle ^{3}} , enclosed in a thick (6.6 cm average) caesium iodide (CsI) scintillation shield in active anti-coincidence[2] to suppress extraneous background. The experiment was capable of measuring gamma-ray energies falling within the energy interval from 0.045 to 10 MeV. The Ge detector system had an initial energy resolution better than 2.5 keV at 1.33 MeV and a line sensitivity from 1.E-4 to 1.E-5 photons/cm2-s, depending on the energy. Key experimental parameters were (1) a geometry factor of 11.1 cm2-sr, (2) effective area ~75 cm 2 {\displaystyle ^{2}} at 100 keV, (3) a field of view of ~30 deg FWHM at 45 keV, and (4) a time resolution of less than 0.1 ms for the germanium detectors and 10 s for the CsI detectors. The gamma-ray spectrometer operated until 1 June 1980, when its cryogen was exhausted.[3][4] The energy resolution of the Ge detectors was subject to degradation (roughly proportional to energy and time) due to radiation damage.[5] The primary data are available at from the NASA HESARC[6] and at JPL. They include instrument, orbit, and aspect data plus some spacecraft housekeeping information on 1600-bpi binary tapes. Some of this material has subsequently been archived on more modern media.[7] The experiment was proposed, developed, and managed by the Jet Propulsion Laboratory of the California Institute of Technology, under the direction of Dr. Allan S. Jacobson.

The Isotopic Composition of Primary Cosmic Rays Experiment

The HEAO C-2 experiment measured the relative composition of the isotopes of the primary cosmic rays between beryllium and iron (Z from 4 to 26) and the elemental abundances up to tin (Z=50). Cerenkov counters and hodoscopes, together with the Earth's magnetic field, formed a spectrometer. They determined charge and mass of cosmic rays to a precision of 10% for the most abundant elements over the momentum range from 2 to 25 GeV/c (c=speed of light). Scientific direction was by Principal Investigators Prof. Bernard Peters and Dr. Lyoie Koch-Miramond. The primary data base has been archived at the Centre Etudes Nuclearires de Saclay and the Danish Space Research Institute. Information on the data products is given by Engelman et al. 1985.[8]

The Heavy Nuclei Experiment

The purpose of the HEAO C-3 experiment was to measure the charge spectrum of cosmic-ray nuclei over the nuclear charge (Z) range from 17 to 120, in the energy interval 0.3 to 10 GeV/nucleon; to characterize cosmic ray sources; processes of nucleosynthesis, and propagation modes. The detector consisted of a double-ended instrument of upper and lower hodoscopes and three dual-gap ion chambers. The two ends were separated by a Cerenkov radiator. The geometrical factor was 4 cm2-sr. The ion chambers could resolve charge to 0.24 charge units at low energy and 0.39 charge units at high energy and high Z. The Cerenkov counter could resolve 0.3 to 0.4 charge units. Binns et al.[9] give more details. The experiment was proposed and managed by the Space Radiation Laboratory of the California Institute of Technology (Caltech), under the direction of Principal Investigator Prof. Edward C. Stone, Jr. of Caltech, and Dr. Martin H. Israel, and Dr. Cecil J. Waddington.

Project

The HEAO 3 Project was the final mission in the High Energy Astronomy Observatory series, which was managed by the NASA Marshall Space Flight Center (MSFC), where the project scientist was Dr. Thomas A. Parnell, and the project manager was Dr. John F. Stone. The prime contractor was TRW.

See also

Wikimedia Commons has media related to HEAO 3.
  • Spaceflight portal

References

  1. ^ "NSSDC ID:1979-082A". Retrieved 25 February 2008.
  2. ^ L. E. Peterson, Instrumental Technique in X-Ray Astronomy, in Annu. Rev. Astron. Astrophys. 13, 423 (1975)
  3. ^ Wheaton, W.A. et al., "The HEAO 3 Background: Spectrum Observed by a Large Germanium Spectrometer in Low Earth Orbit", in AIP conference Proceedings #186, High Energy Radiation Background in Space,1987, Eds Rester & Trombka, p. 304-322.
  4. ^ "The HEAO-3 Satellite". NASA/GSFC. 26 June 2003. Retrieved 7 December 2007.
  5. ^ Mahoney, W.A., Ling, J.C., and Jacobson, A.S. Nuc. Instr. & Meth.,178:363,(1980)
  6. ^ "HEAO 3". Archived from the original on 9 January 2004.
  7. ^ For more detailed information on the data base, contact Dr. James C. Ling, Mail Stop 169–337, JPL, 4800 Oak Grove Drive, Pasadena, Ca 91109
  8. ^ Engelman et al. Astron. & Astrophys., v. 148, pp. 12–20, 1985
  9. ^ W. R. Binns, et al., Nuc. Instr. and Meth., v. 185, pp. 415–426, 1981
  • v
  • t
  • e
SubsidiariesProductsPeopleRelated articles
  • v
  • t
  • e
Operating
Radio and Microwave
Infrared
  • James Webb (since 2022)
  • Odin (since 2001)
  • SOLAR (since 2008)
  • WISE (since 2009)
Optical
  • Aoi (since 2018)
  • Astrosat (since 2015)
  • BRITE constellation (since 2013)
  • CHASE (since 2021)
  • CHEOPS (since 2019)
  • DSCOVR (since 2015)
  • Euclid (since 2023)
  • Hayabusa2 (since 2021)
  • Gaia (since 2013)
  • HiRISE (since 2005)
  • Hubble (since 1990)
  • Hinode (Solar-B) (since 2006)
  • NEOSSat (since 2013)
  • Odin (since 2001)
  • SDO (since 2010)
  • SOHO (since 1995)
  • SOLAR (since 2008)
  • Swift (since 2004)
  • TESS (since 2018)
Ultraviolet
X-ray and Gamma-ray
Other (particle or unclassified)
Planned
Proposed
Retired
Hibernating
(Mission completed)
Lost/Failed
Cancelled
Related
  • Category:Space telescopes
  • v
  • t
  • e
Orbital launches in 1979
  • Kosmos 1070
  • Kosmos 1071
  • Kosmos 1072
  • Molniya-3 No.23
  • Meteor-Priroda No.2-3
  • Kosmos 1073
  • SCATHA
  • Kosmos 1074
  • Ayame 1
  • Kosmos 1075
  • Kosmos 1076
  • Kosmos 1077
  • Zenit-2M No.131
  • AEM-2
  • Hakucho
  • Ekran No.16L
  • Kosmos 1078
  • Solwind
  • Soyuz 32
  • Kosmos 1079
  • Interkosmos 19
  • Meteor-2 No.4
  • Progress 5
  • Kosmos 1080
  • Kosmos 1081
  • Kosmos 1082
  • Kosmos 1083
  • Kosmos 1084
  • Kosmos 1085
  • Kosmos 1086
  • Kosmos 1087
  • Kosmos 1088
  • OPS 3854
  • OPS 6675
  • Kosmos 1089
  • Kosmos 1090
  • Kosmos 1091
  • Soyuz 33
  • Kosmos 1092
  • Molniya-1-43
  • Kosmos 1093
  • Kosmos 1094
  • Kosmos 1095
  • Gran' No.15L
  • Kosmos 1096
  • Kosmos 1097
  • OPS 6292
  • Progress 6
  • Kosmos 1098
  • Kosmos 1099
  • Kosmos 1100
  • Kosmos 1101
  • Kosmos 1102
  • OPS 7164
  • Kosmos 1103
  • Kosmos 1104
  • Ariel 6
  • Molniya-3 No.21
  • Soyuz 34
  • OPS 5390
  • Bhaskara 1
  • Kosmos 1105
  • OPS 7484
  • Kosmos 1106
  • Kosmos 1107
  • Kosmos 1108
  • NOAA-6
  • Kosmos 1109
  • Progress 7 (KRT-10)
  • Kosmos 1110
  • Kosmos 1111
  • Gorizont No.12L
  • Kosmos 1112
  • Kosmos 1113
  • Kosmos 1114
  • Kosmos 1115
  • Kosmos 1116
  • Kosmos 1117
  • Kosmos 1118
  • Unnamed
  • Molniya-1-44
  • Kosmos 1119
  • Westar 3
  • RTP
  • Kosmos 1120
  • Kosmos 1121
  • Kosmos 1122
  • Kosmos 1123
  • Kosmos 1124
  • Kosmos 1125
  • Kosmos 1126
  • Kosmos 1127
  • Kosmos 1128
  • HEAO-3
  • Kosmos 1129
  • Kosmos 1130
  • Kosmos 1131
  • Kosmos 1132
  • Kosmos 1133
  • Kosmos 1134
  • Kosmos 1135
  • Kosmos 1136
  • Kosmos 1137
  • Kosmos 1138
  • OPS 1948
  • Ekran No.17L
  • Kosmos 1139
  • Kosmos 1140
  • Unnamed
  • Kosmos 1141
  • Molniya-1-45
  • Kosmos 1142
  • Kosmos 1143
  • Magsat
  • Meteor-2 No.7
  • Interkosmos 20
  • Kosmos 1144
  • OPS 9443
  • OPS 9444
  • Kosmos 1145
  • Kosmos 1146
  • Satcom 3
  • Kosmos 1147
  • Soyuz T-1
  • CAT-1
  • Gorizont No.13L
  • Kosmos 1148
Payloads are separated by bullets ( · ), launches by pipes ( | ). Crewed flights are indicated in underline. Uncatalogued launch failures are listed in italics. Payloads deployed from other spacecraft are denoted in (brackets).