Hilbert's inequality

In analysis, a branch of mathematics, Hilbert's inequality states that

| r s u r u s ¯ r s | π r | u r | 2 . {\displaystyle \left|\sum _{r\neq s}{\dfrac {u_{r}{\overline {u_{s}}}}{r-s}}\right|\leq \pi \displaystyle \sum _{r}|u_{r}|^{2}.}

for any sequence u1,u2,... of complex numbers. It was first demonstrated by David Hilbert with the constant 2π instead of π; the sharp constant was found by Issai Schur. It implies that the discrete Hilbert transform is a bounded operator in 2.

Formulation

Let (um) be a sequence of complex numbers. If the sequence is infinite, assume that it is square-summable:

m | u m | 2 < {\displaystyle \sum _{m}|u_{m}|^{2}<\infty }

Hilbert's inequality (see Steele (2004)) asserts that

| r s u r u s ¯ r s | π r | u r | 2 . {\displaystyle \left|\sum _{r\neq s}{\dfrac {u_{r}{\overline {u_{s}}}}{r-s}}\right|\leq \pi \displaystyle \sum _{r}|u_{r}|^{2}.}

Extensions

In 1973, Montgomery & Vaughan reported several generalizations of Hilbert's inequality, considering the bilinear forms

r s u r u ¯ s csc π ( x r x s ) {\displaystyle \sum _{r\neq s}u_{r}{\overline {u}}_{s}\csc \pi (x_{r}-x_{s})}

and

r s u r u ¯ s λ r λ s , {\displaystyle \sum _{r\neq s}{\dfrac {u_{r}{\overline {u}}_{s}}{\lambda _{r}-\lambda _{s}}},}

where x1,x2,...,xm are distinct real numbers modulo 1 (i.e. they belong to distinct classes in the quotient group R/Z) and λ1,...,λm are distinct real numbers. Montgomery & Vaughan's generalizations of Hilbert's inequality are then given by

| r s u r u s ¯ csc π ( x r x s ) | δ 1 r | u r | 2 . {\displaystyle \left|\sum _{r\neq s}u_{r}{\overline {u_{s}}}\csc \pi (x_{r}-x_{s})\right|\leq \delta ^{-1}\sum _{r}|u_{r}|^{2}.}

and

| r s u r u s ¯ λ r λ s | π τ 1 r | u r | 2 . {\displaystyle \left|\sum _{r\neq s}{\dfrac {u_{r}{\overline {u_{s}}}}{\lambda _{r}-\lambda _{s}}}\right|\leq \pi \tau ^{-1}\sum _{r}|u_{r}|^{2}.}

where

δ = min r , s + x r x s , τ = min r , s + λ r λ s , {\displaystyle \delta ={\min _{r,s}}{}_{+}\|x_{r}-x_{s}\|,\quad \tau =\min _{r,s}{}_{+}\|\lambda _{r}-\lambda _{s}\|,}
s = min m Z | s m | {\displaystyle \|s\|=\min _{m\in \mathbb {Z} }|s-m|}

is the distance from s to the nearest integer, and min+ denotes the smallest positive value. Moreover, if

0 < δ r min s + x r x s and 0 < τ r min s + λ r λ s , {\displaystyle 0<\delta _{r}\leq {\min _{s}}{}_{+}\|x_{r}-x_{s}\|\quad {\text{and}}\quad 0<\tau _{r}\leq {\min _{s}}{}_{+}\|\lambda _{r}-\lambda _{s}\|,}

then the following inequalities hold:

| r s u r u s ¯ csc π ( x r x s ) | 3 2 r | u r | 2 δ r 1 . {\displaystyle \left|\sum _{r\neq s}u_{r}{\overline {u_{s}}}\csc \pi (x_{r}-x_{s})\right|\leq {\dfrac {3}{2}}\sum _{r}|u_{r}|^{2}\delta _{r}^{-1}.}

and

| r s u r u s ¯ λ r λ s | 3 2 π r | u r | 2 τ r 1 . {\displaystyle \left|\sum _{r\neq s}{\dfrac {u_{r}{\overline {u_{s}}}}{\lambda _{r}-\lambda _{s}}}\right|\leq {\dfrac {3}{2}}\pi \sum _{r}|u_{r}|^{2}\tau _{r}^{-1}.}

References

  • Online book chapter Hilbert’s Inequality and Compensating Difficulties extracted from Steele, J. Michael (2004). "Chapter 10: Hilbert's Inequality and Compensating Difficulties". The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities. Cambridge University Press. pp. 155–165. ISBN 0-521-54677-X..
  • Montgomery, H. L.; Vaughan, R. C. (1974). "Hilbert's inequality". J. London Math. Soc. Series 2. 8: 73–82. doi:10.1112/jlms/s2-8.1.73. ISSN 0024-6107.

External links

  • Godunova, E.K. (2001) [1994], "Hilbert inequality", Encyclopedia of Mathematics, EMS Press