ISL1

Protein-coding gene in the species Homo sapiens
ISL1
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

2RGT, 4JCJ

Identifiers
AliasesISL1, ISLET1, Isl-1, ISL LIM homeobox 1
External IDsOMIM: 600366 MGI: 101791 HomoloGene: 1661 GeneCards: ISL1
Gene location (Human)
Chromosome 5 (human)
Chr.Chromosome 5 (human)[1]
Chromosome 5 (human)
Genomic location for ISL1
Genomic location for ISL1
Band5q11.1Start51,383,448 bp[1]
End51,394,730 bp[1]
Gene location (Mouse)
Chromosome 13 (mouse)
Chr.Chromosome 13 (mouse)[2]
Chromosome 13 (mouse)
Genomic location for ISL1
Genomic location for ISL1
Band13|13 D2.2Start116,434,817 bp[2]
End116,446,225 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • secondary oocyte

  • islet of Langerhans

  • human penis

  • urethra

  • pylorus

  • cardia

  • sperm

  • pancreatic ductal cell

  • gastric mucosa

  • vagina
Top expressed in
  • superior cervical ganglion

  • trigeminal ganglion

  • medial ganglionic eminence

  • islet of Langerhans

  • facial motor nucleus

  • median eminence

  • urethra

  • arcuate nucleus

  • fossa

  • cochlea
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
  • DNA binding
  • transcription coactivator activity
  • sequence-specific DNA binding
  • DNA-binding transcription activator activity, RNA polymerase II-specific
  • chromatin binding
  • metal ion binding
  • RNA polymerase II cis-regulatory region sequence-specific DNA binding
  • bHLH transcription factor binding
  • protein binding
  • nuclear receptor binding
  • cis-regulatory region sequence-specific DNA binding
  • estrogen receptor binding
  • promoter-specific chromatin binding
  • DNA-binding transcription factor activity, RNA polymerase II-specific
Cellular component
  • cytoplasm
  • nucleoplasm
  • nucleus
Biological process
  • negative regulation of neuron apoptotic process
  • peripheral nervous system neuron development
  • positive regulation of interleukin-1 alpha production
  • pituitary gland development
  • regulation of transcription, DNA-templated
  • negative regulation of neuron differentiation
  • positive regulation of interleukin-12 production
  • axon regeneration
  • spinal cord motor neuron cell fate specification
  • trigeminal nerve development
  • neuron fate specification
  • outflow tract morphogenesis
  • positive regulation of interferon-gamma production
  • positive regulation of granulocyte colony-stimulating factor production
  • heart morphogenesis
  • negative regulation of transcription by RNA polymerase II
  • transcription by RNA polymerase II
  • positive regulation of angiogenesis
  • positive regulation of histone acetylation
  • outflow tract septum morphogenesis
  • endocardial cushion morphogenesis
  • ventricular cardiac muscle tissue morphogenesis
  • atrial septum morphogenesis
  • multicellular organism development
  • cardiac cell fate determination
  • regulation of secondary heart field cardioblast proliferation
  • cardiac muscle cell myoblast differentiation
  • cellular response to glucocorticoid stimulus
  • visceral motor neuron differentiation
  • mesenchymal cell differentiation
  • positive regulation of granulocyte macrophage colony-stimulating factor production
  • neural crest cell migration
  • neuron differentiation
  • positive regulation of cell population proliferation
  • positive regulation of interleukin-1 beta production
  • positive regulation of interleukin-6 production
  • positive regulation of tumor necrosis factor production
  • regulation of gene expression
  • pancreas development
  • positive regulation of macrophage colony-stimulating factor production
  • positive regulation of vascular endothelial growth factor production
  • negative regulation of protein homodimerization activity
  • positive regulation of DNA binding
  • peripheral nervous system neuron axonogenesis
  • spinal cord motor neuron differentiation
  • neuron fate commitment
  • secondary heart field specification
  • innervation
  • negative regulation of intracellular estrogen receptor signaling pathway
  • negative regulation of inflammatory response
  • cardiac right ventricle morphogenesis
  • negative regulation of canonical Wnt signaling pathway
  • positive regulation of insulin secretion
  • sensory system development
  • pharyngeal system development
  • retinal ganglion cell axon guidance
  • positive regulation of transcription by RNA polymerase II
  • positive regulation of cell differentiation
  • transcription, DNA-templated
  • cell differentiation
  • positive regulation of tyrosine phosphorylation of STAT protein
  • positive regulation of epithelial to mesenchymal transition
  • negative regulation of epithelial cell proliferation
  • heart development
  • axonogenesis
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

3670

16392

Ensembl

ENSG00000016082

ENSMUSG00000042258

UniProt

P61371

P61372

RefSeq (mRNA)

NM_002202

NM_021459

RefSeq (protein)

NP_002193

NP_067434

Location (UCSC)Chr 5: 51.38 – 51.39 MbChr 13: 116.43 – 116.45 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Insulin gene enhancer protein ISL-1 is a protein that in humans is encoded by the ISL1 gene.[5] [6]

Function

This gene encodes a transcription factor containing two N-terminal LIM domains and one C-terminal homeodomain. The encoded protein plays an important role in the embryogenesis of pancreatic islets of Langerhans. In mouse embryos, a deficiency of this gene results in failure to undergo neural tube motor neuron differentiation.[6]

Interactions

ISL1 has been shown to interact with Estrogen receptor alpha.[7]

Role in cardiac development

ISL1 is a marker for cardiac progenitors of the secondary heart field (SHF) which includes the right ventricle and the outflow tract. The biological function of ISL1 is demonstrated through ISL1 mutant mice and chick embryos that have altered cell proliferation, survival, and migration of cardiogenic precursors and severe cardiac defects.[8] More recently it has been defined as a marker for a cardiac progenitor cell lineage that is capable of differentiating into all 3 major cell types of the heart: cardiomyocytes, smooth muscle and endothelial cell lineages.[9][10][11] Research has shown that ISL1 promotes differentiation of cardiac cells and a depletion of ISL1 can respecify the cell fate of nascent cardiomyocytes, such as from ventricular to an atrial identity. [12]

The validity of ISL1 as a marker for cardiac progenitor cells has been questioned since some groups have found no evidence that ISL1 cells serve as cardiac progenitors.[13] Furthermore, ISL1 is not restricted to second heart field progenitors in the developing heart, but also labels cardiac neural crest.[14] This paper supports work from the Vilquin group in 2011, which concluded that ISL1 can represent cells from both neural crest and cardiomyocyte lineages.[15] While it has been demonstrated by multiple groups that ISL1-positive cells can indeed differentiate into all 3 major cell types of the heart, their significance in cardiovascular development is still unclear and their clinical relevance has been seriously questioned.

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000016082 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000042258 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Tanizawa Y, Riggs AC, Dagogo-Jack S, Vaxillaire M, Froguel P, Liu L, et al. (July 1994). "Isolation of the human LIM/homeodomain gene islet-1 and identification of a simple sequence repeat polymorphism [corrected]". Diabetes. 43 (7): 935–941. doi:10.2337/diabetes.43.7.935. PMID 7912209.
  6. ^ a b "Entrez Gene: ISL1 ISL1 transcription factor, LIM/homeodomain, (islet-1)".
  7. ^ Gay F, Anglade I, Gong Z, Salbert G (October 2000). "The LIM/homeodomain protein islet-1 modulates estrogen receptor functions". Molecular Endocrinology. 14 (10): 1627–1648. doi:10.1210/mend.14.10.0538. PMID 11043578.
  8. ^ Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (December 2003). "Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart". Developmental Cell. 5 (6): 877–889. doi:10.1016/s1534-5807(03)00363-0. PMC 5578462. PMID 14667410.
  9. ^ Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, et al. (December 2006). "Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification". Cell. 127 (6): 1151–1165. doi:10.1016/j.cell.2006.10.029. PMID 17123592. S2CID 31238870.
  10. ^ Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, et al. (February 2005). "Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages". Nature. 433 (7026): 647–653. Bibcode:2005Natur.433..647L. doi:10.1038/nature03215. PMC 5578466. PMID 15703750.
  11. ^ Bu L, Jiang X, Martin-Puig S, Caron L, Zhu S, Shao Y, et al. (July 2009). "Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages". Nature. 460 (7251): 113–117. Bibcode:2009Natur.460..113B. doi:10.1038/nature08191. PMID 19571884. S2CID 801804.
  12. ^ Quaranta R, Fell J, Rühle F, Rao J, Piccini I, Araúzo-Bravo MJ, et al. (January 2018). "Revised roles of ISL1 in a hES cell-based model of human heart chamber specification". eLife. 7. doi:10.7554/eLife.31706. PMC 5770158. PMID 29337667.
  13. ^ Weinberger F, Mehrkens D, Friedrich FW, Stubbendorff M, Hua X, Müller JC, et al. (May 2012). "Localization of Islet-1-positive cells in the healthy and infarcted adult murine heart". Circulation Research. 110 (10): 1303–1310. doi:10.1161/CIRCRESAHA.111.259630. PMC 5559221. PMID 22427341.
  14. ^ Engleka KA, Manderfield LJ, Brust RD, Li L, Cohen A, Dymecki SM, Epstein JA (March 2012). "Islet1 derivatives in the heart are of both neural crest and second heart field origin". Circulation Research. 110 (7): 922–926. doi:10.1161/CIRCRESAHA.112.266510. PMC 3355870. PMID 22394517.
  15. ^ Khattar P, Friedrich FW, Bonne G, Carrier L, Eschenhagen T, Evans SM, et al. (June 2011). "Distinction between two populations of islet-1-positive cells in hearts of different murine strains". Stem Cells and Development. 20 (6): 1043–1052. doi:10.1089/scd.2010.0374. PMC 5880329. PMID 20942609.

Further reading

  • Larsson LI (November 1998). "On the development of the islets of Langerhans". Microscopy Research and Technique. 43 (4): 284–291. doi:10.1002/(SICI)1097-0029(19981115)43:4<284::AID-JEMT2>3.0.CO;2-0. PMID 9849969. S2CID 19416265.
  • Dong J, Asa SL, Drucker DJ (November 1991). "Islet cell and extrapancreatic expression of the LIM domain homeobox gene isl-1". Molecular Endocrinology. 5 (11): 1633–1641. doi:10.1210/mend-5-11-1633. PMID 1685766.
  • Riggs AC, Tanizawa Y, Aoki M, Wasson J, Ferrer J, Rabin DU, et al. (June 1995). "Characterization of the LIM/homeodomain gene islet-1 and single nucleotide screening in NIDDM". Diabetes. 44 (6): 689–694. doi:10.2337/diabetes.44.6.689. PMID 7789634.
  • Wang M, Drucker DJ (March 1994). "The LIM domain homeobox gene isl-1: conservation of human, hamster, and rat complementary deoxyribonucleic acid sequences and expression in cell types of nonneuroendocrine lineage". Endocrinology. 134 (3): 1416–1422. doi:10.1210/endo.134.3.7907017. PMID 7907017.
  • Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, Jessell TM (January 1996). "Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation". Cell. 84 (2): 309–320. doi:10.1016/S0092-8674(00)80985-X. PMID 8565076. S2CID 5780554.
  • Bonaldo MF, Lennon G, Soares MB (September 1996). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Research. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
  • Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H (January 1997). "Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells". Nature. 385 (6613): 257–260. Bibcode:1997Natur.385..257A. doi:10.1038/385257a0. PMID 9000074. S2CID 4341596.
  • Jurata LW, Pfaff SL, Gill GN (February 1998). "The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors". The Journal of Biological Chemistry. 273 (6): 3152–3157. doi:10.1074/jbc.273.6.3152. PMID 9452425.
  • Bach I, Rodriguez-Esteban C, Carrière C, Bhushan A, Krones A, Rose DW, et al. (August 1999). "RLIM inhibits functional activity of LIM homeodomain transcription factors via recruitment of the histone deacetylase complex". Nature Genetics. 22 (4): 394–399. doi:10.1038/11970. PMID 10431247. S2CID 22326394.
  • Gay F, Anglade I, Gong Z, Salbert G (October 2000). "The LIM/homeodomain protein islet-1 modulates estrogen receptor functions". Molecular Endocrinology. 14 (10): 1627–1648. doi:10.1210/mend.14.10.0538. PMID 11043578.
  • Ostendorff HP, Peirano RI, Peters MA, Schlüter A, Bossenz M, Scheffner M, Bach I (March 2002). "Ubiquitination-dependent cofactor exchange on LIM homeodomain transcription factors". Nature. 416 (6876): 99–103. Bibcode:2002Natur.416...99O. doi:10.1038/416099a. PMID 11882901. S2CID 4426785.
  • Holm P, Rydlander B, Luthman H, Kockum I (June 2004). "Interaction and association analysis of a type 1 diabetes susceptibility locus on chromosome 5q11-q13 and the 7q32 chromosomal region in Scandinavian families". Diabetes. 53 (6): 1584–1591. doi:10.2337/diabetes.53.6.1584. PMID 15161765.
  • Hori Y, Gu X, Xie X, Kim SK (April 2005). "Differentiation of insulin-producing cells from human neural progenitor cells". PLOS Medicine. 2 (4): e103. doi:10.1371/journal.pmed.0020103. PMC 1087208. PMID 15839736.
  • Takeuchi JK, Mileikovskaia M, Koshiba-Takeuchi K, Heidt AB, Mori AD, Arruda EP, et al. (May 2005). "Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development". Development. 132 (10): 2463–2474. doi:10.1242/dev.01827. hdl:10393/12782. PMID 15843409.
  • Peng SY, Wang WP, Meng J, Li T, Zhang H, Li YM, et al. (December 2005). "ISL1 physically interacts with BETA2 to promote insulin gene transcriptional synergy in non-beta cells". Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 1731 (3): 154–159. doi:10.1016/j.bbaexp.2005.08.013. PMID 16321656.

External links

  • v
  • t
  • e
  • 1bw5: THE NMR SOLUTION STRUCTURE OF THE HOMEODOMAIN OF THE RAT INSULIN GENE ENHANCER PROTEIN ISL-1, 50 STRUCTURES
    1bw5: THE NMR SOLUTION STRUCTURE OF THE HOMEODOMAIN OF THE RAT INSULIN GENE ENHANCER PROTEIN ISL-1, 50 STRUCTURES
  • v
  • t
  • e
(1) Basic domains
(1.1) Basic leucine zipper (bZIP)
(1.2) Basic helix-loop-helix (bHLH)
Group A
Group B
Group C
bHLH-PAS
Group D
Group E
Group F
bHLH-COE
(1.3) bHLH-ZIP
(1.4) NF-1
(1.5) RF-X
(1.6) Basic helix-span-helix (bHSH)
(2) Zinc finger DNA-binding domains
(2.1) Nuclear receptor (Cys4)
subfamily 1
subfamily 2
subfamily 3
subfamily 4
subfamily 5
subfamily 6
subfamily 0
(2.2) Other Cys4
(2.3) Cys2His2
(2.4) Cys6
(2.5) Alternating composition
(2.6) WRKY
(3) Helix-turn-helix domains
(3.1) Homeodomain
Antennapedia
ANTP class
protoHOX
Hox-like
metaHOX
NK-like
other
(3.2) Paired box
(3.3) Fork head / winged helix
(3.4) Heat shock factors
(3.5) Tryptophan clusters
(3.6) TEA domain
  • transcriptional enhancer factor
(4) β-Scaffold factors with minor groove contacts
(4.1) Rel homology region
(4.2) STAT
(4.3) p53-like
(4.4) MADS box
(4.6) TATA-binding proteins
(4.7) High-mobility group
(4.9) Grainyhead
(4.10) Cold-shock domain
(4.11) Runt
(0) Other transcription factors
(0.2) HMGI(Y)
(0.3) Pocket domain
(0.5) AP-2/EREBP-related factors
(0.6) Miscellaneous
see also transcription factor/coregulator deficiencies

This article incorporates text from the United States National Library of Medicine, which is in the public domain.