Identric mean

The identric mean of two positive real numbers xy is defined as:[1]

I ( x , y ) = 1 e lim ( ξ , η ) ( x , y ) ξ ξ η η ξ η = lim ( ξ , η ) ( x , y ) exp ( ξ ln ξ η ln η ξ η 1 ) = { x if  x = y 1 e x x y y x y else {\displaystyle {\begin{aligned}I(x,y)&={\frac {1}{e}}\cdot \lim _{(\xi ,\eta )\to (x,y)}{\sqrt[{\xi -\eta }]{\frac {\xi ^{\xi }}{\eta ^{\eta }}}}\\[8pt]&=\lim _{(\xi ,\eta )\to (x,y)}\exp \left({\frac {\xi \cdot \ln \xi -\eta \cdot \ln \eta }{\xi -\eta }}-1\right)\\[8pt]&={\begin{cases}x&{\text{if }}x=y\\[8pt]{\frac {1}{e}}{\sqrt[{x-y}]{\frac {x^{x}}{y^{y}}}}&{\text{else}}\end{cases}}\end{aligned}}}

It can be derived from the mean value theorem by considering the secant of the graph of the function x x ln x {\displaystyle x\mapsto x\cdot \ln x} . It can be generalized to more variables according by the mean value theorem for divided differences. The identric mean is a special case of the Stolarsky mean.

See also

  • Mean
  • Logarithmic mean

References

  1. ^ RICHARDS, KENDALL C; HILARI C. TIEDEMAN (2006). "A NOTE ON WEIGHTED IDENTRIC AND LOGARITHMIC MEANS" (PDF). Journal of Inequalities in Pure and Applied Mathematics. 7 (5). Archived (PDF) from the original on 21 September 2013. Retrieved 20 September 2013.
  • Weisstein, Eric W. "Identric Mean". MathWorld.