In-water surface cleaning

Methods of removing contaminants from underwater surfaces

In-water cleaning, also known as in-water surface cleaning, is a collection of methods for removing unwanted material in-situ from the underwater surface of a structure. This often refers to removing marine fouling growth from ship hulls, but also has applications on civil engineering structures, pipeline intakes and similar components which are impossible or inconvenient to remove from the water for maintenance.[1] It does not generally refer to cleaning the inside of underwater or other pipelines, a process known as pigging. Many applications require the intervention of a diver, either to provide the power, or to direct a powered tool.

Applications

  • Removal of marine fouling for ship performance improvement.[1]
  • Removal of marine organisms to prevent infestation by alien species. Fouling of ships' bottoms by marine organisms is recognised as a major vector for the introduction of invasive alien species, which can have significant economic and environmental impacts. The risk can be mitigated by maintenance of the immersed surfaces to kill or remove fouling organisms before entry into the protected areas. The usual primary method is the use of anti-fouling coatings, which are themselves an environmental hazard due to toxicity. In-water cleaning is an adjunct to anti-fouling in cases where the coating has not been completely effective, and also carries a biosecurity risk due to the potential release of the removed organisms and toxins from the coatings.[1]
  • Removal of fouling and contaminants in preparation for inspection, maintenance or repair work.

Ship bottom cleaning

Methods

Manual methods:[1]

  • Removal of organisms by hand
  • Cleaning using scrapers, hand brushes and scouring pads

Mechanical methods:[1]

  • Brushing – the use of a tool with bristles to scrape off the contaminants.
    • Brush cart – a device which transports powered brushes along the surface to be cleaned. Brush carts do not usually include a system for removal or treatment of waste, but it can be done if there is sufficient demand. Brushes that do not directly contact the surface coating can remove fouling without damaging the coating itself. The standoff can be controlled when the cart rolls over the surface on wheels. Some removal of the surface of some anti-fouling coatings may actually improve the performance by exposing a fresh layer with more concentrated active materials.[1]
    • Rotary brush
  • Water jetting
    • High pressure water jetting – when correctly applied, high pressure water jetting can provide acceptable levels of cleaning without damaging anti-fouling coatings or releasing toxins to the environment, but this requires fairly accurate control of jet angle and distance from the surface, and duration of impingement. In other circumstances water jetting can be used to remove paint. Water jetting can be applied manually by divers, by diver-operated carts, or by ROVs.[1] Pressures of between 200 and 600 bar may be used in high-pressure water jetting. Cleaning rates are generally lower underwater than with the ship in dry dock, where rates of 200 m2 per hour are possible. Exceptionally heavy fouling may reduce the rate to 20 m2 per hour. With sufficient pressure, (around 750 bar), damaged concrete coating can be removed from steel pipelines without damage to the steel. Special nozzles are available for jetting between parallel surfaces and inside pipes. Jet geometry affects cleaning rate. A round jet has the maximum impact on the contamination, but the area affected is relatively small. A fan jet impinges on a much wider swath, but with less impact, and the width and impact of a fan jet are strongly affected by the distance between the nozzle and the surface. Where a fan jet is effective, the optimum distance and angle can be discovered by experiment, and will often vary across the surface. Soft or resilient deposits may peel off in coherent sheets if jetted at an angle of around 30 to 60° to the surface. More brittle deposits will tend to break up as they are detached, and may need a jetting angle nearer to perpendicular to the surface.[2]: ch40 
    • Abrasive water jetting – this system is intended to remove contaminants, coatings, and corrosion products down to the substrate. Abrasive grit is entrained in the jet of water and the impact of the grit has an aggressive cleaning action.
    • Cavitation water jet – this system uses jets of water containing cavitation voids of water vapour, generated ultrasonically in the nozzle, which develop high localised impact pressures on hard surfaces when the bubbles implode at the surface to be cleaned. This is claimed to do less damage to surface coatings than high pressure jetting, and reduce the hazard to the operator. The cavitation jet can remove fouling, loose paint and rust, without damage to sound paint when used correctly, but can erode ablative and self-polishing paint coatings if applied too closely or for too long. Tools include hand-held pistols, diver and self-propelled carts and potentially, also robotic systems. Suction systems to recover waste are available, and the waste can be treated or filtered.[1]

Capture and treatment of waste products

Depending on the reason for bottom cleaning, it may be desirable to capture and treat the waste dislodged from the surface. If the purpose is to remove potentially invasive alien species, then they must be removed from the water or killed. If the organisms are not a problem, it may be necessary to contain released toxins from the anti-fouling coating.[1]

Environmental impact

In-water cleaning of structures and vessels may distribute the surface contaminants in an area where they could be harmful. There are two main concerns:

  • Release of potentially invasive alien organisms. This is mainly a problem when the fouled surface is on a vessel which has traveled from a different ecological region, and is covered with species alien to the region where it is cleaned.[1]
  • Release of toxins which may degrade the local environment. This is a concern where the surface has a layer of antifouling paint under the fouling layer.[1]

Effects on substrate

Some cleaning technologies can cause significant damage or degradation of the substrate, particularly removal or excessive abrasion of protective or biologically active surface coatings. In some cases removal of the upper layer of an anti-fouling paint can expose paint which has a stronger concentration of active biocides, which can reactivate the paint.[1]

References

  1. ^ a b c d e f g h i j k l Morrisey, Donald; Woods, Chris (November 2015). In-water cleaning technologies: Review of information. MPI Technical Paper No: 2015/38 Prepared for Ministry for Primary Industries (Report). Wellington, New Zealand: Ministry for Primary Industries. ISBN 978-1-77665-128-3. ISSN 2253-3923 – via www.researchgate.net.
  2. ^ Jameson, Grant. New Commercial Air Diving Manual. Durban, South Africa: Professional Diving Centre.
  • v
  • t
  • e
Underwater diving
Basic equipment
Breathing gas
Buoyancy and
trim equipment
Decompression
equipment
Diving suit
Helmets
and masks
Instrumentation
Mobility
equipment
Safety
equipment
Underwater
breathing
apparatus
Open-circuit
scuba
Diving rebreathers
Surface-supplied
diving equipment
Diving
equipment
manufacturers
Access equipment
Breathing gas
handling
Decompression
equipment
Platforms
Underwater
habitat
Remotely operated
underwater vehicles
Safety equipment
General
Activities
Competitions
Equipment
Freedivers
Hazards
Historical
Organisations
Occupations
Military
diving
Military
diving
units
Underwater
work
Salvage diving
  • SS Egypt
  • Kronan
  • La Belle
  • SS Laurentic
  • RMS Lusitania
  • Mars
  • Mary Rose
  • USS Monitor
  • HMS Royal George
  • Vasa
Diving
contractors
Tools and
equipment
Underwater
weapons
Underwater
firearm
Specialties
Diver
organisations
Diving tourism
industry
Diving events
and festivals
Diving
hazards
Consequences
Diving
procedures
Risk
management
Diving team
Equipment
safety
Occupational
safety and
health
Diving
disorders
Pressure
related
Oxygen
Inert gases
Carbon dioxide
Breathing gas
contaminants
Immersion
related
Treatment
Personnel
Screening
Research
Researchers in
diving physiology
and medicine
Diving medical
research
organisations
Law
Archeological
sites
Underwater art
and artists
Engineers
and inventors
Historical
equipment
Diver
propulsion
vehicles
Military and
covert operations
  • Raid on Alexandria (1941)
  • Sinking of the Rainbow Warrior
Scientific projects
Awards and events
Incidents
Dive boat incidents
  • Sinking of MV Conception
Diver rescues
Early diving
Freediving fatalities
Offshore
diving incidents
  • Byford Dolphin diving bell accident
  • Drill Master diving accident
  • Star Canopus diving accident
  • Stena Seaspread diving accident
  • Venture One diving accident
  • Waage Drill II diving accident
  • Wildrake diving accident
Professional
diving fatalities
Scuba diving
fatalities
Publications
Manuals
  • NOAA Diving Manual
  • U.S. Navy Diving Manual
  • Basic Cave Diving: A Blueprint for Survival
  • Underwater Handbook
  • Bennett and Elliott's physiology and medicine of diving
  • Encyclopedia of Recreational Diving
  • The new science of skin and scuba diving
  • Professional Diver's Handbook
  • Basic Scuba
Standards and
Codes of Practice
General non-fiction
Research
Dive guides
Training and registration
Diver
training
Skills
Recreational
scuba
certification
levels
Core diving skills
Leadership skills
Specialist skills
Diver training
certification
and registration
organisations
Commercial diver
certification
authorities
Commercial diving
schools
Free-diving
certification
agencies
Recreational
scuba
certification
agencies
Scientific diver
certification
authorities
Technical diver
certification
agencies
Cave
diving
Military diver
training centres
Military diver
training courses
Surface snorkeling
Snorkeling/breath-hold
Breath-hold
Open Circuit Scuba
Rebreather
  • Underwater photography
Sports governing
organisations
and federations
Competitions
Pioneers
of diving
Underwater
scientists
archaeologists and
environmentalists
Scuba record
holders
Underwater
filmmakers
and presenters
Underwater
photographers
Underwater
explorers
Aquanauts
Writers and journalists
Rescuers
Frogmen
Commercial salvors
Diving
physics
Diving
physiology
Decompression
theory
Diving
environment
Classification
Impact
Other
Deep-submergence
vehicle
  • Aluminaut
  • DSV Alvin
  • American submarine NR-1
  • Bathyscaphe
    • Archimède
    • FNRS-2
    • FNRS-3
    • Harmony class bathyscaphe
    • Sea Pole-class bathyscaphe
    • Trieste II
  • Deepsea Challenger
  • Ictineu 3
  • JAGO
  • Jiaolong
  • Konsul-class submersible
  • Limiting Factor
  • Russian submarine Losharik
  • Mir
  • Nautile
  • Pisces-class deep submergence vehicle
  • DSV Sea Cliff
  • DSV Shinkai
  • DSV Shinkai 2000
  • DSV Shinkai 6500
  • DSV Turtle
  • DSV-5 Nemo
Submarine rescue
Deep-submergence
rescue vehicle
Submarine escape
Escape set
Special
interest
groups
Neutral buoyancy
facilities for
Astronaut training
Other