Jupiter Icy Moons Explorer

European Space Agency spacecraft

Jupiter Icy Moons Explorer
Artist's impression of the Juice spacecraft
NamesJuice, JUICE
Mission typePlanetary science
OperatorESA
COSPAR ID2023-053A Edit this at Wikidata
SATCAT no.56176Edit this on Wikidata
Mission durationCruise phase: 8 years
Science phase: 3.5 years
Elapsed: 11 months and 14 days
Spacecraft properties
ManufacturerAirbus Defence and Space
Launch mass6,070 kg (13,380 lb)[1]
Dry mass2,420 kg (5,340 lb)[1]
Dimensions16.8 x 27.1 x 13.7 meters[1]
Power850 watts from a solar panel ~85 m2 (910 sq ft)[1]
Start of mission
Launch date14 April 2023 12:14:36 UTC [2]
RocketAriane 5 ECA
Launch siteCentre Spatial Guyanais, ELA-3
ContractorArianespace
Flyby of Moon
Closest approach19 August 2024
Flyby of Earth
Closest approach20 August 2024
Flyby of Venus
Closest approach31 August 2025
Flyby of Earth
Closest approach29 September 2026
Flyby of Earth
Closest approach18 January 2029
Jupiter orbiter
Orbital insertionJuly 2031 (planned)
Orbital departureDecember 2034 (planned)
Ganymede orbiter
Orbital insertionDecember 2034 (planned)
Orbital parameters
Periapsis altitude500 km (310 mi)
Apoapsis altitude500 km (310 mi)
Instruments
GALAGAnymede Laser Altimeter
JANUSJovis, Amorum ac Natorum Undique Scrutator
J-MAGJUICE-MAGnetometer
MAJISMoons And Jupiter Imaging Spectrometer
PEPParticle Environment Package
RIMERadar for Icy Moons Exploration
RPWIRadio and Plasma Wave Investigation
SWISub-millimeter Wave Instrument
UVSUV imaging Spectrograph
3GMGravity and Geophysics of Jupiter and Galilean Moons
Juice mission logo
Juice mission insignia
Cosmic Vision
← Euclid
SMILE →
 

The Jupiter Icy Moons Explorer (Juice, formerly JUICE[3]) is an interplanetary spacecraft that was launched on 14 April 2023 from Guiana Space Centre in French Guiana by the European Space Agency (ESA) with Airbus Defence and Space as the main contractor.[4][5] The mission is planned to study Ganymede, Callisto, and Europa, three of Jupiter's Galilean moons. They are thought to have significant bodies of liquid water beneath their icy surfaces which would make them potentially habitable environments.[6][7]

The spacecraft is expected to reach Jupiter in July 2031 after four gravity assists and eight years of travel.[8][9] In December 2034, the spacecraft will enter orbit around Ganymede for its close-up science mission.[8] Its period of operations will overlap with NASA's Europa Clipper mission, launching in 2024.

Background

The mission, started as a reformulation of the Jupiter Ganymede Orbiter proposal, which was to be ESA's component of the cancelled Europa Jupiter System Mission – Laplace (EJSM-Laplace).[10] It became a candidate for the first L-class mission (L1) of the ESA Cosmic Vision Programme, and its selection was announced on 2 May 2012.[11]

In April 2012, JUICE was recommended over the proposed Advanced Telescope for High Energy Astrophysics (ATHENA) X-ray telescope and a gravitational wave observatory (New Gravitational wave Observatory (NGO)).[12][13]

In July 2015, Airbus Defence and Space was selected as the prime contractor to design and build the probe, to be assembled in Toulouse, France.[14]

By 2023, the mission was estimated to cost ESA 1.5 billion euros ($1.6 billion).[15]

Spacecraft

The main spacecraft design drivers are related to the large distance to the Sun, the use of solar power, and Jupiter's harsh radiation environment. The orbit insertions at Jupiter and Ganymede and the large number of flyby manoeuvres (more than 25 gravity assists, and two Europa flybys) require the spacecraft to carry about 3,000 kg (6,600 lb) of chemical propellant.[16]

Juice has a fixed 2.5 meter diameter high-gain antenna and a steerable medium-gain antenna, both X- and K-band will be used. Downlink rates of 2 Gb/day are possible with ground-based Deep Space Antennas. On-board data storage capability is 1.25 Tb.[1]

The Juice main engine is a hypergolic bi-propellant (mono-methyl hydrazine and mixed oxides of nitrogen) 425 N thruster. A 100 kg multilayer insulation provides thermal control. The spacecraft is 3-axis stabilized using momentum wheels. Radiation shielding is used to protect onboard electronics from the Jovian environment.[1]

The Juice science payload has a mass of 280 kg and includes the JANUS camera system, the MAJIS visible and infrared imaging spectrometer, the UVS ultraviolet imaging spectrograph, RIME radar sounder, GALA laser altimeter, SWI submillimetre wave instrument, J-MAG magnetometer, PEP particle and plasma package, RPWI radio and plasma wave investigation, 3GM radio science package, the PRIDE radio science instrument, and the RADEM radiation monitor. A 10.6-meter deployable boom will hold J-MAG and RPWI, a 16-meter-long deployable antenna will be used for RIME. Four 3-meter booms carry parts of the RPWI instrument. The other instruments are mounted on the spacecraft body, or for 3GM, within the spacecraft bus.[1]

Timeline

Launch

Ariane 5 launch of the ESA Juice spacecraft

Juice was launched into space on 14 April 2023 from the Guiana Space Centre on an Ariane 5 rocket. This was the final launch of an ESA science mission using the Ariane 5 vehicle,[17] and was the second to last launch of the rocket overall.[18]

The launch was originally scheduled for 13 April 2023, but due to poor weather the launch was postponed.[19] The next day a second launch attempt succeeded, with liftoff occurring at 12:14:36 UTC. After the spacecraft separated from the rocket, it established a successful radio signal connection with the ground at 13:04 UTC. Juice's solar arrays were deployed about half an hour later, prompting ESA to deem the launch a success.[17]

Trajectory

Following the launch, there will be multiple planned gravity assists to put Juice on a trajectory to Jupiter: a flyby of the Earth–Moon system in August 2024, Venus in August 2025, second flyby of Earth in September 2026, and a third and final flyby of Earth in January 2029.[8]

Juice will pass through the asteroid belt twice. A flyby of the asteroid 223 Rosa was proposed to occur in October 2029, but was abandoned to save fuel for the primary Jovian mission.[20][21][22]

Gravity assists include:[23]

  • Interplanetary transfer (Earth, Venus, Earth, Earth)[17]
  • Jupiter orbit insertion and apocentre reduction with multiple Ganymede gravity assists
  • Reduction of velocity with Ganymede–Callisto assists
  • Increase inclination with 10–12 Callisto gravity assists
  Sun ·   Earth ·   Juice ·   Venus ·   223 Rosa ·   Jupiter ·   Ganymede ·   Callisto  ·   Europa