KCNK2

Protein-coding gene in the species Homo sapiens
KCNK2
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

4TWK

Identifiers
AliasesKCNK2, K2p2.1, TPKC1, TREK, TREK-1, TREK1, hTREK-1c, hTREK-1e, potassium two pore domain channel subfamily K member 2
External IDsOMIM: 603219 MGI: 109366 HomoloGene: 7794 GeneCards: KCNK2
Gene location (Human)
Chromosome 1 (human)
Chr.Chromosome 1 (human)[1]
Chromosome 1 (human)
Genomic location for KCNK2
Genomic location for KCNK2
Band1q41Start215,005,775 bp[1]
End215,237,090 bp[1]
Gene location (Mouse)
Chromosome 1 (mouse)
Chr.Chromosome 1 (mouse)[2]
Chromosome 1 (mouse)
Genomic location for KCNK2
Genomic location for KCNK2
Band1|1 H6Start188,940,127 bp[2]
End189,134,470 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • stromal cell of endometrium

  • left adrenal gland

  • Achilles tendon

  • ganglionic eminence

  • tibial nerve

  • prefrontal cortex

  • caudate nucleus

  • putamen

  • amygdala

  • nucleus accumbens
Top expressed in
  • median eminence

  • arcuate nucleus

  • olfactory tubercle

  • ventromedial nucleus

  • nucleus accumbens

  • piriform cortex

  • paraventricular nucleus of hypothalamus

  • calvaria

  • dorsomedial hypothalamic nucleus

  • Region I of hippocampus proper
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
  • potassium channel activity
  • voltage-gated potassium channel activity
  • potassium channel inhibitor activity
  • outward rectifier potassium channel activity
  • potassium ion leak channel activity
Cellular component
  • axon terminus
  • integral component of membrane
  • endoplasmic reticulum membrane
  • membrane
  • voltage-gated potassium channel complex
  • plasma membrane
  • astrocyte projection
  • calyx of Held
  • cell surface
  • axon
  • neuronal cell body
  • apical plasma membrane
  • endoplasmic reticulum
  • neuron projection
  • nucleus
  • integral component of plasma membrane
Biological process
  • cochlea development
  • G protein-coupled receptor signaling pathway
  • positive regulation of cell death
  • positive regulation of cellular response to hypoxia
  • regulation of membrane potential
  • cardiac ventricle development
  • response to mechanical stimulus
  • memory
  • ion transport
  • potassium ion transport
  • response to axon injury
  • potassium ion transmembrane transport
  • negative regulation of cardiac muscle cell proliferation
  • cellular response to hypoxia
  • negative regulation of DNA biosynthetic process
  • stabilization of membrane potential
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

3776

16526

Ensembl

ENSG00000082482

ENSMUSG00000037624

UniProt

O95069

P97438

RefSeq (mRNA)

NM_001017424
NM_001017425
NM_014217

NM_001159850
NM_001281847
NM_001281848
NM_010607
NM_001357119

RefSeq (protein)

NP_001017424
NP_001017425
NP_055032

NP_001153322
NP_001268776
NP_001268777
NP_034737
NP_001344048

NP_001389703
NP_001389704
NP_001389705
NP_001389755
NP_001389756

Location (UCSC)Chr 1: 215.01 – 215.24 MbChr 1: 188.94 – 189.13 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Potassium channel subfamily K member 2, also known as TREK-1, is a protein that in humans is encoded by the KCNK2 gene.[5][6][7]

This gene encodes K2P2.1, a lipid-gated ion channel belonging to the two-pore-domain background potassium channel protein family. This type of potassium channel is formed by two homodimers that create a channel that releases potassium out of the cell to control resting membrane potential. The channel is opened by anionic lipid, certain anesthetics, membrane stretching, intracellular acidosis, and heat. Three transcript variants encoding different isoforms have been found for this gene.[7]

Function in neurons

TREK-1 is part of the subfamily of mechano-gated potassium channels that are present in mammalian neurons. They can be gated in both chemical and physical ways and can be opened via both physical stimuli and chemical stimuli. TREK-1 channels are found in a variety of tissues, but are particularly abundant in the brain and heart and are seen in various types of neurons.[8] The C-terminal of TREK-1 channels plays a role in the mechanosensitivity of the channels.[9]

In the neurons of the central nervous system, TREK-1 channels are important in physiological, pathophysiological, and pharmacological processes, including having a role in electrogenesis, ischemia, and anesthesia. TREK-1 has an important role in neuroprotection against epilepsy and brain and spinal cord ischemia and is being evaluated as a potential target for new developments of therapeutic agents for neurology and anesthesiology.[10]

In the absence of a properly functioning cytoskeleton, TREK-1 channels can still open via mechanical gating.[9] The cell membrane functions independently of the cytoskeleton and the thickness and curvature of the membrane is able to modulate the activity of the TREK-1 channels.[11] The change in thickness is thought to be sensed by an amphipathic helix that extends from the inner leaflet of the membrane.[12]

The insertion of certain compounds into the membrane, including inhaled anesthetics and propofol, activate TREK-1 through the enzyme phospholipase D2 (PLD2). Prior to the addition of anesthetic, PLD2 associates with GM-1 lipid rafts. After anesthetic, the enzyme or a complex of the enzyme and the channel traffic to PIP2 domains where the enzyme makes phosphatidic acid that opens the channel.[13]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000082482 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000037624 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Lesage F, Lazdunski M (Oct 1998). "Mapping of human potassium channel genes TREK-1 (KCNK2) and TASK (KCNK3) to chromosomes 1q41 and 2p23". Genomics. 51 (3): 478–9. doi:10.1006/geno.1998.5397. PMID 9721223.
  6. ^ Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (Dec 2005). "International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels". Pharmacol Rev. 57 (4): 527–40. doi:10.1124/pr.57.4.12. PMID 16382106. S2CID 7356601.
  7. ^ a b "Entrez Gene: KCNK2 potassium channel, subfamily K, member 2".
  8. ^ Fink M, Duprat F, Lesage F, Reyes R, Romey G, Heurteaux C, Lazdunski M (1996). "Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel". The EMBO Journal. 15 (24): 6854–6862. doi:10.1002/j.1460-2075.1996.tb01077.x. PMC 452511. PMID 9003761.
  9. ^ a b Patel AJ, Honoré E, Maingret F, Lesage F, Fink M, Duprat F, Lazdunski M (1998). "A mammalian two pore domain mechano-gated S-like K+ channel". The EMBO Journal. 17 (15): 4283–4290. doi:10.1093/emboj/17.15.4283. PMC 1170762. PMID 9687497.
  10. ^ Giorda R, Weisberg EP, Ip TK, Trucco M (1992). "Genomic structure and strain-specific expression of the natural killer cell receptor NKR-P1". Journal of Immunology. 149 (6): 1957–1963. doi:10.4049/jimmunol.149.6.1957. PMID 1517565.
  11. ^ Patel AJ, Lazdunski M, Honoré E (2001). "Lipid and mechano-gated 2P domain K(+) channels". Curr Opin Cell Biol. 13 (4): 422–428. doi:10.1016/s0955-0674(00)00231-3. PMID 11454447.
  12. ^ Nayebosadri A, Petersen EN, Cabanos C, Hansen SB (2018). "A Membrane Thickness Sensor in TREK-1 Channels Transduces Mechanical Force". Social Science Research Network. SSRN 3155650. {{cite journal}}: Cite journal requires |journal= (help)
  13. ^ Pavel MA, Petersen EN, Wang H, Lerner RA, Hansen SB (28 May 2020). "Studies on the mechanism of general anesthesia". Proceedings of the National Academy of Sciences of the United States of America. 117 (24): 13757–13766. Bibcode:2020PNAS..11713757P. doi:10.1073/pnas.2004259117. PMC 7306821. PMID 32467161.

Further reading

  • Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N (2001). "Potassium leak channels and the KCNK family of two-P-domain subunits". Nat. Rev. Neurosci. 2 (3): 175–84. doi:10.1038/35058574. PMID 11256078. S2CID 9682396.
  • Honoré E (2007). "The neuronal background K2P channels: focus on TREK1". Nat. Rev. Neurosci. 8 (4): 251–61. doi:10.1038/nrn2117. PMID 17375039. S2CID 21421846.
  • Fink M, Duprat F, Lesage F, et al. (1997). "Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel". EMBO J. 15 (24): 6854–62. doi:10.1002/j.1460-2075.1996.tb01077.x. PMC 452511. PMID 9003761.
  • Patel AJ, Honoré E, Lesage F, et al. (1999). "Inhalational anesthetics activate two-pore-domain background K+ channels". Nat. Neurosci. 2 (5): 422–6. doi:10.1038/8084. PMID 10321245. S2CID 23092576.
  • Meadows HJ, Benham CD, Cairns W, et al. (2000). "Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel". Pflügers Arch. 439 (6): 714–22. doi:10.1007/s004240050997. PMID 10784345.
  • Maylie J, Adelman JP (2001). "Beam me up, Scottie! TREK channels swing both ways". Nat. Neurosci. 4 (5): 457–8. doi:10.1038/87402. PMID 11319549. S2CID 5982574.
  • Bockenhauer D, Zilberberg N, Goldstein SA (2001). "KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel". Nat. Neurosci. 4 (5): 486–91. doi:10.1038/87434. PMID 11319556. S2CID 7658182.
  • Enyeart JJ, Xu L, Danthi S, Enyeart JA (2003). "An ACTH- and ATP-regulated background K+ channel in adrenocortical cells is TREK-1". J. Biol. Chem. 277 (51): 49186–99. doi:10.1074/jbc.M207233200. PMID 12368289.
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. Bibcode:2002PNAS...9916899M. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
  • Imabayashi H, Mori T, Gojo S, et al. (2003). "Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis". Exp. Cell Res. 288 (1): 35–50. doi:10.1016/S0014-4827(03)00130-7. PMID 12878157.
  • Miller P, Peers C, Kemp PJ (2004). "Polymodal regulation of hTREK1 by pH, arachidonic acid, and hypoxia: physiological impact in acidosis and alkalosis". Am. J. Physiol., Cell Physiol. 286 (2): C272–82. doi:10.1152/ajpcell.00334.2003. PMID 14522822. S2CID 25421690.
  • Fu GK, Wang JT, Yang J, et al. (2005). "Circular rapid amplification of cDNA ends for high-throughput extension cloning of partial genes". Genomics. 84 (1): 205–10. doi:10.1016/j.ygeno.2004.01.011. PMID 15203218.
  • Kennard LE, Chumbley JR, Ranatunga KM, et al. (2005). "Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine". Br. J. Pharmacol. 144 (6): 821–9. doi:10.1038/sj.bjp.0706068. PMC 1576064. PMID 15685212.
  • Miller P, Kemp PJ, Peers C (2005). "Structural requirements for O2 sensing by the human tandem-P domain channel, hTREK1". Biochem. Biophys. Res. Commun. 331 (4): 1253–6. doi:10.1016/j.bbrc.2005.04.042. PMID 15883010.
  • Murbartián J, Lei Q, Sando JJ, Bayliss DA (2005). "Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels". J. Biol. Chem. 280 (34): 30175–84. doi:10.1074/jbc.M503862200. PMID 16006563.
  • Hughes S, Magnay J, Foreman M, et al. (2006). "Expression of the mechanosensitive 2PK+ channel TREK-1 in human osteoblasts". J. Cell. Physiol. 206 (3): 738–48. doi:10.1002/jcp.20536. PMID 16250016. S2CID 1788790.
  • Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Res. 16 (1): 55–65. doi:10.1101/gr.4039406. PMC 1356129. PMID 16344560.

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

  • v
  • t
  • e
Ligand-gated
Voltage-gated
Constitutively active
Proton-gated
Voltage-gated
Calcium-activated
Inward-rectifier
Tandem pore domain
Voltage-gated
Miscellaneous
Cl: Chloride channel
H+: Proton channel
M+: CNG cation channel
M+: TRP cation channel
H2O (+ solutes): Porin
Cytoplasm: Gap junction
By gating mechanism
Ion channel class
see also disorders