Landsat 3

American Earth-observing satellite launched in 1978 as part of the Landsat program

Landsat 3
Landsat 3 in the clean room
Mission typeEarth imaging
OperatorNASA
COSPAR ID1978-026A[1]
SATCAT no.10702[1]
Mission duration5 years, 6 months, 2 days
Spacecraft properties
BusNimbus
ManufacturerGE Aerospace
Launch mass960.0 kilograms (2,116.4 lb)
Start of mission
Launch dateMarch 5, 1978 (1978-03-05)
RocketDelta 2910
Launch siteVandenberg AFB SLC-2W
End of mission
DeactivatedSeptember 7, 1983
Orbital parameters
Reference systemGeocentric
RegimeSun-synchronous
Perigee altitude818 kilometers (508 mi)
Apogee altitude918 kilometers (570 mi)
Inclination99.1 degrees
Period103.16 minutes
EpochMay 15, 1990[1]
 

Landsat 3 is the third satellite of the Landsat program. It was launched on March 5, 1978, with the primary goal of providing a global archive of satellite imagery. Unlike later Landsat satellites, Landsat 3 was managed solely by NASA. Landsat 3 decommissioned on September 7, 1983, beyond its design life of one year.[2] The data collected during Landsat 3's lifetime was used by 31 countries. Countries that cannot afford their own satellite are able to use the data for ecological preservation efforts and to determine the location of natural resources.

Background

The first satellite of the Landsat program, Landsat 1 (originally designated ERTA-1), took and transmitted over 100,000 photos during its lifetime.[3]

Landsat 3 (originally designated Landsat C) was the third satellite launched as a part of the Landsat program, and the last Landsat satellite managed by NASA.[2] The satellite had a very similar designs to Landsat 1 and Landsat 2.[4]

Satellite design

Development

Landsat 3 was built by GE Aerospace.[2] The objective of Landsat 3 was to extend the period of space data acquisition for Earth resources by Landsat 1 and Landsat 2. Landsat 3 was to obtain information on agricultural and forestry resources, geology and mineral resources, hydrology and water resources, geography, cartography, environmental pollution, oceanography and marine resources, and meteorological phenomena.[5]

Operation

Attitude control system (ACS)

The spacecraft used an attitude control system (ACS) with freon gas as the propellant. Combined with horizon scanners, Sun sensors, and a command antenna, the ACS was able to control the spacecraft in all three axes to plus or minus one degree.[5]

Data collection systems (DCS)

The satellite also carried two wide-band video tape recorders (WBVTR) capable of storing up to 30 minutes of scanner or camera data, giving the spacecraft's sensors a near-global coverage capability.[2] Video was transmitted back to Earth in both real time and from the recorders at 2265.5 MHz.[5]

The satellite was also equipped with a data collection system (DCS) to collect information from remote, individually equipped ground stations and to relay the data to central acquisition stations. The DCS was composed of three different collection methods. The first was the data collection platforms (DCPs), which could consist of ocean buoys, constant pressure balloons, or automatic ground stations. The second was the satellite equipment, and the third the ground data centers. Due to the orbit of the satellite, data could be obtained at a minimum of every 12 hours. No data processing or signal multiplexing occurred on the satellite.[6] The design of the DCS came from the Nimbus-3 platform, then known as the interrogation, recording, and location system (IRLS).[4]

Sensors

Multispectral Scanner (MSS)

Landsat 3 carried a Multispectral Scanner, built by Hughes Aircraft Corporation. The sensor weighed 64 kilograms (141 lb), required 50 W of power, and had a maximum 75 meters (246 ft) resolution.[4] It was made up of a double reflector telescope, scanning mirror, and detectors. The primary mission of the MSS was to obtain data for agriculture, forestry, geology, and hydrology, but the MSS could also collect information for oceanography and meteorology purposes.[7]

The MSS had five spectral bands, which is one more than Landsat 1 and 2. Each spectral band had different scientific uses. Band 4 primarily investigated areas of water, with the ability to detect sediment laden areas and areas of shallow water. Band 5 was primarily used to identify cultural features. Band 6 sensed the vegetation boundaries between land, water, and landforms. Band 7 was the most proficient at sensing through atmospheric haze, and identified water and land boundaries, vegetation, and landforms.[8] The scene size for the scanners of the MSS was 170 kilometers (110 mi) to 185 km (115 mi), which is the area the sensors could survey per scan. The ground sampling interval of the MSS was 57 m (187 ft) to 79 m (259 ft), which is medium resolution.[9][8] Unlike the previous two Landsat missions, a thermal band was built into Landsat 3's MSS, but this instrument failed shortly after the satellite was deployed on July 11, 1978.[10] The thermal band would have enabled the MSS to have remote sensing capabilities during the night.[7]

Return Beam Vidicon (RBV)

The Return Beam Vidicon (RBV) was designed at RCA in Princeton, New Jersey.[4] It contained two cameras to cover the 0.53 to 0.75 micrometer spectral band. The cameras were structurally isolated from the satellite so that they could maintain their alignment. Each camera was triggered every 12.5 seconds so that the images would overlap in the direction the spacecraft was moving. The cameras each had a 98 kilometers (61 mi) square viewing range, and combined the range was 185 km (115 mi). The cameras contained an optical lens, RBV sensor, thermoelectric cooler, deflection and focus coils, a mechanical shutter, and erase lamps. Landsat 3's RBV had a resolution of 40 meters (130 ft), which was twice the resolution of Landsat 1's 80 m (260 ft).[11]

Mission

Launch

The 960 kilograms (2,120 lb) Landsat 3 was launched from Vandenberg Air Force Base, California on March 5, 1978.[12][13] It was placed into a Sun-synchronous, near polar orbit at an inclination of 99.1 degrees and an altitude of 570 miles (920 km). Landsat 3 completed 14 orbits of the Earth daily, and its cycle repeated every 18 days.[2]

Operations

Landsat 3's MSS had five spectral bands, but one failed shortly after launch. The satellite was placed in standby mode on March 31, 1983.[2] Landsat 3 was decommissioned on September 7, 1983.[10]

Results

The data from Landsat 3 was used by over 400 programs in 31 countries. Countries that could not afford their own satellite used the data to discover and monitor resources that they would have not been capable of otherwise. For example, Bolivia spent $10,000 on data which was used to discover vast lithium deposits, while United States companies have invested more than $136 million for further exploration. Kenya used the data to monitor grazing conditions and to help lion and cheetah preservation efforts, and Pakistan used the data to decide where to dredge the river delta to build a new port.[14]

Specific locations for Landsat 3's data can be found by using the World Reference System (WRS). To find any specific location on Earth, a row and path number are required; for example, Row 60 is at the equator. Landsat 1-3 use WRS-1, but Landsats 4 and after used WRS-2.[4]

References

  1. ^ a b c McDowell, Jonathan. "Satellite Catalog". Jonathan's Space Page. Retrieved March 18, 2014.
  2. ^ a b c d e f United States Geological Survey (August 9, 2006). "Landsat 3 History". Archived from the original on April 12, 2016. Retrieved June 29, 2017.
  3. ^ "Set to Launch Landsat 2". Lebanon Daily News. January 22, 1975. p. 15. Retrieved May 7, 2017 – via Newspapers.com. Free access icon
  4. ^ a b c d e "Landsat-1 to Landsat-3". eoPortal Directory. Retrieved June 30, 2017.
  5. ^ a b c "Landsat 3". NASA Space Science Data Coordinated Archive. Retrieved July 2, 2017.
  6. ^ "Data Collection System (DCS)". NASA Space Science Data Coordinated Archive. Retrieved June 30, 2017.
  7. ^ a b "Landsat 3 MSS". NASA Space Science Data Coordinated Archive. Retrieved July 9, 2017.
  8. ^ a b Mann, J. (June 2012). "Landsat 1–5 Multispectral Scanner (MSS) Image Assessment System (IAS) Radiometric Algorithm Description Document (ADD)" (PDF). U.S. Geological Survey. Archived from the original (PDF) on March 31, 2017. Retrieved March 31, 2017.
  9. ^ United States Geological Survey (August 9, 2006). "Landsat 2 History". Archived from the original on April 28, 2016. Retrieved January 16, 2007.
  10. ^ a b "Landsat 3". NASA Goddard Space Flight Center. March 13, 2014. Retrieved March 18, 2014.
  11. ^ "Landsat 3 Return Beam Vidicon (RBV)". NASA Space Science Data Coordinated Archive. Retrieved July 9, 2017.
  12. ^ "Landsat 3 Launch Information". NASA Space Science Data Coordinated Archive. Retrieved July 9, 2017.
  13. ^ "NSSDC Master Catalog". NASA. Retrieved March 18, 2014.
  14. ^ "Satellites do More Than Just Spy". The Index-Journal. May 27, 1980. p. 17. Retrieved July 17, 2017 – via Newspapers.com. Free access icon
  • Spaceflight portal
  • v
  • t
  • e
Orbital launches in 1978
  • Kosmos 974
  • Intelsat IVA F-3
  • Soyuz 27
  • Kosmos 975
  • Kosmos 976
  • Kosmos 977
  • Kosmos 978
  • Kosmos 979
  • Kosmos 980
  • Kosmos 981
  • Kosmos 982
  • Kosmos 983
  • Kosmos 984
  • Kosmos 985
  • Progress 1
  • Molniya-3 No.20
  • Kosmos 986
  • Fanhui Shi Weixing 4
  • IUE
  • Kosmos 987
  • Kyokko
  • Kosmos 988
  • OPS 6291
  • Kosmos 989
  • Ume 2
  • Kosmos 990
  • OPS 5111
  • OPS 6031
  • Kosmos 991
  • Soyuz 28
  • Molniya-1-39
  • Kosmos 992
  • Landsat 3
  • OSCAR 8
  • PIX-1
  • Kosmos 993
  • Kosmos 994
  • OPS 0460
  • OPS 7858
  • Kosmos 995
  • OPS 9439
  • OPS 9440
  • Kosmos 996
  • Kosmos 997
  • Kosmos 998
  • Kosmos 999
  • Kosmos 1000
  • Intelsat IVA F-6
  • Kosmos 1001
  • Kosmos 1002
  • OPS 8790
  • Yuri 1
  • Kosmos 1003
  • HCMM
  • OPS 6183
  • Kosmos 1004
  • OTS-2
  • Kosmos 1005
  • Kosmos 1006
  • OPS 5112
  • Kosmos 1007
  • Kosmos 1008
  • Kosmos 1009
  • Pioneer Venus Orbiter
  • Kosmos 1010
  • Kosmos 1011
  • Kosmos 1012
  • Ekran No.13L
  • Molniya-1-40
  • Kosmos 1013
  • Kosmos 1014
  • Kosmos 1015
  • Kosmos 1016
  • Kosmos 1017
  • Kosmos 1018
  • Kosmos 1019
  • Kosmos 1020
  • Kosmos 1021
  • OPS 9454
  • Kosmos 1022
  • OPS 4515
  • Soyuz 29
  • GOES 3
  • Kosmos 1023
  • Seasat
  • Soyuz 30
  • Kosmos 1024
  • Kosmos 1025
  • Comstar 1C
  • Kosmos 1026
  • Progress 2
  • GEOS-2
  • Molniya-1-41
  • Gran' No.14L
  • Kosmos 1027
  • OPS 7310
  • Kosmos 1028
  • Progress 3
  • Pioneer Venus Multiprobe
  • ISEE-3
  • Ekran No.15L
  • Molniya-1-41
  • Soyuz 31
  • Kosmos 1029
  • Kosmos 1030
  • Venera 11
  • Kosmos 1031
  • Venera 12
  • Jikiken
  • Kosmos 1032
  • Kosmos 1033
  • Progress 4
  • Kosmos 1034
  • Kosmos 1035
  • Kosmos 1036
  • Kosmos 1037
  • Kosmos 1038
  • Kosmos 1039
  • Kosmos 1040
  • Kosmos 1041
  • Kosmos 1042
  • OPS 5113
  • Kosmos 1043
  • Molniya-3 No.22
  • TIROS-N
  • Kosmos 1044
  • Ekran No.14L
  • Nimbus 7
  • CAMEO
  • Interkosmos 18
  • Magion 1
  • Kosmos 1045
  • RS-1
  • RS-2
  • Prognoz 7
  • Kosmos 1046
  • Einstein
  • Kosmos 1047
  • Kosmos 1048
  • NATO 3C
  • Kosmos 1049
  • Kosmos 1050
  • Kosmos 1051
  • Kosmos 1052
  • Kosmos 1053
  • Kosmos 1054
  • Kosmos 1055
  • Kosmos 1056
  • Kosmos 1057
  • Kosmos 1058
  • Kosmos 1059
  • Kosmos 1060
  • OPS 5114
  • OPS 9441
  • OPS 9442
  • Kosmos 1061
  • Kosmos 1062
  • Anik B1
  • DRIMS
  • Kosmos 1063
  • Gorizont No.11L
  • Kosmos 1064
  • Kosmos 1065
  • Kosmos 1066
  • Kosmos 1067
  • Kosmos 1068
  • Kosmos 1069
Payloads are separated by bullets ( · ), launches by pipes ( | ). Crewed flights are indicated in underline. Uncatalogued launch failures are listed in italics. Payloads deployed from other spacecraft are denoted in (brackets).