List of superconductors

The table below shows some of the parameters of common superconductors. X:Y means material X doped with element Y, TC is the highest reported transition temperature in kelvins and HC is a critical magnetic field in tesla. "BCS" means whether or not the superconductivity is explained within the BCS theory.

List

Substance Class TC (K) HC (T) Type BCS References
Al Element 1.20 0.01 I yes [1][2][3]
Bi Element 5.3×10−4 5.2×10−6 I no [note 1] [4]
Cd Element 0.52 0.0028 I yes [2][3]
Diamond:B Element 11.4 4 II yes [5][6][7]
Ga Element 1.083 0.0058 I yes [2][3][8]
Hf Element 0.165 I yes [2]
α-Hg Element 4.15 0.04 I yes [2][3]
β-Hg Element 3.95 0.04 I yes [2][3]
In Element 3.4 0.03 I yes [2][3]
Ir Element 0.14 0.0016 I yes [2][8]
α-La Element 4.9 I yes [2]
β-La Element 6.3 I yes [2]
Li Element 4×10−4 I [9]
Mo Element 0.92 0.0096 I yes [2][8]
Nb Element 9.26 0.82 II yes [2][3]
Os Element 0.65 0.007 I yes [2]
Pa Element 1.4 I yes [10]
Pb Element 7.19 0.08 I yes [2][3]
Re Element 2.4 0.03 I yes [2][3][11]
Rh Element 3.25×10−4 4.9×10−6 I [12]
Ru Element 0.49 0.005 I yes [2][3]
Si:B Element 0.4 0.4 II yes [13]
Sn Element 3.72 0.03 I yes [2][3]
Ta Element 4.48 0.09 I yes [2][3]
Tc Element 7.46–11.2 0.04 II yes [2][3]
α-Th Element 1.37 0.013 I yes [2][3]
Ti Element 0.39 0.01 I yes [2][3]
Tl Element 2.39 0.02 I yes [2][3]
α-U Element 0.68 I yes [2][10]
β-U Element 1.8 I yes [10]
V Element 5.03 1 II yes [2][3]
α-W Element 0.015 0.00012 I yes [8][10][14]
β-W Element 1–4 [14]
Zn Element 0.855 0.005 I yes [2][3]
Zr Element 0.55 0.014 I yes [2][3]
Ba8Si46 Clathrate 8.07 0.008 II yes [15]
CaH6 Clathrate 215 (172 GPa) [16][17]
C6Ca Compound 11.5 0.95 II [18]
C6Li3Ca2 Compound 11.15 II [18]
C8K Compound 0.14 II [18]
C8KHg Compound 1.4 II [18]
C6K Compound 1.5 II [19]
C3K Compound 3.0 II [19]
C3Li Compound <0.35 II [19]
C2Li Compound 1.9 II [19]
C3Na Compound 2.3–3.8 II [19]
C2Na Compound 5.0 II [19]
C8Rb Compound 0.025 II [18]
C6Sr Compound 1.65 II [18]
Sr2RuO4 Compound 0.93 II [20]
C6Yb Compound 6.5 II [18]
C60Cs2Rb Compound 33 II yes [21]
C60K3 Compound 19.8 0.013 II yes [15][22]
C60RbX Compound 28 II yes [23]
C60Cs3 Compound 38
FeB4 Compound 2.9 II [24]
InN Compound 3 II yes [25]
In2O3 Compound 3.3 ~3 II yes [26]
LaB6 Compound 0.45 yes [27]
La3Ni2O7 Nickelate 80 (>14 GPa) [28]
MgB2 Compound 39 74 II yes [29]
Nb3Al Compound 18 II yes [2]
NbC1-xNx Compound 17.8 12 II yes [30][31]
Nb3Ge Compound 23.2 37 II yes [32]
NbO Compound 1.38 II yes [33]
NbN Compound 16 II yes [2]
Nb3Sn Compound 18.3 30 II yes [34]
NbTi Compound 10 15 II yes [2]
SiC:B Compound 1.4 0.008 I yes [35]
SiC:Al Compound 1.5 0.04 II yes [35]
TiN Compound 5.6 5 I yes [36][37][38]
V3Si Compound 17 [39]
YB6 Compound 8.4 II yes [40][41][42]
ZrN Compound 10 yes [43]
ZrB12 Compound 6.0 II yes [42]
UTe2 Compound 2.0 no [44]
CuBa0.15La1.85O4 Cuprate 52.5 [45]
YBCO Cuprate 95 120–250 II no
EuBCO Cuprate 93 II no [46]
GdBCO Cuprate 91 II no [47]
BSCCO Cuprate 104
HBCCO Cuprate 135
SmFeAs(O,F) Iron-based 55
CeFeAs(O,F) Iron-based 41
LaFeAs(O,F) Iron-based 26
LaFeSiH Iron-based 11 [48]
LaFePO Iron-based 4
FeSe:SrTiO3 Iron-based 60-100
(Ba,K)Fe2As2 Iron-based 38
NaFeAs Iron-based 20
HgTlBaCaCuO Compound 164 II
H2S Polyhydride 203 (155 GPa) II
LaH10 Polyhydride 250 (150 GPa) [49]
Yb Element 1.4 (>86 GPa) no [50]

Notes

  1. ^ According to,[4] superconductivity in Bi is not compatible with conventional BCS theory because the Fermi energy of Bi is comparable to the phonon energy (Debye frequency).

References

  1. ^ Cochran, J. F.; Mapother, D. E. (1958). "Superconducting Transition in Aluminum". Physical Review. 111 (1): 132–142. Bibcode:1958PhRv..111..132C. doi:10.1103/PhysRev.111.132.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Matthias, B. T.; Geballe, T. H.; Compton, V. B. (1963). "Superconductivity". Reviews of Modern Physics. 35 (1): 1–22. Bibcode:1963RvMP...35....1M. doi:10.1103/RevModPhys.35.1.
  3. ^ a b c d e f g h i j k l m n o p q r s Eisenstein, J. (1954). "Superconducting Elements". Reviews of Modern Physics. 26 (3): 277–291. Bibcode:1954RvMP...26..277E. doi:10.1103/RevModPhys.26.277.
  4. ^ a b Prakash, O.; et al. (2017). "Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure". Science. 355 (6320): 52–55. arXiv:1603.04310. Bibcode:2017Sci...355...52P. doi:10.1126/science.aaf8227. PMID 27934703. S2CID 206649934.
  5. ^ Ekimov, E. A.; Sidorov, V. A.; Bauer, E. D.; Mel'Nik, N. N.; Curro, N. J.; Thompson, J. D.; Stishov, S. M. (2004). "Superconductivity in diamond". Nature. 428 (6982): 542–545. arXiv:cond-mat/0404156. Bibcode:2004Natur.428..542E. doi:10.1038/nature02449. PMID 15057827. S2CID 4423950.
  6. ^ Ekimov, E. A.; Sidorov, V. A.; Zoteev, A. V.; Lebed, Y. B.; Thompson, J. D.; Stishov, S. M. (2008). "Structure and superconductivity of isotope-enriched boron-doped diamond". Science and Technology of Advanced Materials. 9 (4): 044210. Bibcode:2008STAdM...9d4210E. doi:10.1088/1468-6996/9/4/044210. PMC 5099641. PMID 27878027. Open access icon
  7. ^ Takano, Y.; Takenouchi, T.; Ishii, S.; Ueda, S.; Okutsu, T.; Sakaguchi, I.; Umezawa, H.; Kawarada, H.; Tachiki, M. (2007). "Superconducting properties of homoepitaxial CVD diamond". Diamond and Related Materials. 16 (4–7): 911. Bibcode:2007DRM....16..911T. doi:10.1016/j.diamond.2007.01.027. S2CID 95904362.
  8. ^ a b c d Kaxiras, Efthimios (2003). Atomic and electronic structure of solids. Cambridge University Press. p. 283. ISBN 0-521-52339-7.
  9. ^ Tuoriniemi, J.; et al. (2007). "Superconductivity in lithium below 0.4 millikelvin at ambient pressure". Nature. 447 (7141): 187–189. Bibcode:2007Natur.447..187T. doi:10.1038/nature05820. PMID 17495921. S2CID 4430500.
  10. ^ a b c d Fowler, R. D.; Matthias, B. T.; Asprey, L. B.; Hill, H. H.; Lindsay, J. D. G.; Olsen, C. E.; White, R. W. (1965). "Superconductivity of Protactinium". Physical Review Letters. 15 (22): 860. Bibcode:1965PhRvL..15..860F. doi:10.1103/PhysRevLett.15.860.
  11. ^ Daunt, J. G.; Smith, T. S. (1952). "Superconductivity of Rhenium". Physical Review. 88 (2): 309. Bibcode:1952PhRv...88..309D. doi:10.1103/PhysRev.88.309.
  12. ^ Buchal, Ch.; et al. (1983). "Superconductivity of Rhodium at Ultralow Temperatures". Phys. Rev. Lett. 50 (1): 64–67. Bibcode:1983PhRvL..50...64B. doi:10.1103/PhysRevLett.50.64.
  13. ^ Bustarret, E.; Marcenat, C.; Achatz, P.; Kačmarčik, J.; Lévy, F.; Huxley, A.; Ortéga, L.; Bourgeois, E.; Blase, X.; Débarre, D.; Boulmer, J. (2006). "Superconductivity in doped cubic silicon". Nature. 444 (7118): 465–8. Bibcode:2006Natur.444..465B. doi:10.1038/nature05340. PMID 17122852. S2CID 4383370.
  14. ^ a b Lita, A. E.; Rosenberg, D.; Nam, S.; Miller, A. J.; Balzar, D.; Kaatz, L. M.; Schwall, R. E. (2005). "Tuning of Tungsten Thin Film Superconducting Transition Temperature for Fabrication of Photon Number Resolving Detectors". IEEE Transactions on Applied Superconductivity. 15 (2): 3528. Bibcode:2005ITAS...15.3528L. doi:10.1109/TASC.2005.849033. S2CID 5804011.
  15. ^ a b Rachi, T.; Kumashiro, R.; Fukuoka, H.; Yamanaka, S.; Tanigaki, K. (2006). "Sp3-network superconductors made from IVth-group elements". Science and Technology of Advanced Materials. 7: S88–S93. Bibcode:2006STAdM...7S..88R. doi:10.1016/j.stam.2006.04.006. Open access icon
  16. ^ Ma, Liang; Wang, Kui; Xie, Yu; Yang, Xin; Wang, Yingying; Zhou, Mi; Liu, Hanyu; Yu, Xiaohui; Zhao, Yongsheng; Wang, Hongbo; Liu, Guangtao (2022-04-20). "High-Temperature Superconducting Phase in Clathrate Calcium Hydride ${\mathrm{CaH}}_{6}$ up to 215 K at a Pressure of 172 GPa". Physical Review Letters. 128 (16): 167001. doi:10.1103/PhysRevLett.128.167001. PMID 35522494. S2CID 248543296.
  17. ^ Wells, Sarah (2022-04-20). "Elusive Superconducting Superhydride Synthesized". Physics. 15. Bibcode:2022PhyOJ..15..s53W. doi:10.1103/Physics.15.s53. S2CID 249250489.
  18. ^ a b c d e f g Emery, N.; Hérold, C.; Marêché, J. F. O.; Lagrange, P. (2008). "Synthesis and superconducting properties of CaC6". Science and Technology of Advanced Materials. 9 (4): 044102. Bibcode:2008STAdM...9d4102E. doi:10.1088/1468-6996/9/4/044102. PMC 5099629. PMID 27878015. Open access icon
  19. ^ a b c d e f Belash, I. T.; Zharikov, O. V.; Palnichenko, A. V. (1989). "Superconductivity of GIC with Li, Na and K". Synthetic Metals. 34 (1–3): 455–460. doi:10.1016/0379-6779(89)90424-4.
  20. ^ Maeno, Yoshiteru; Rice, T. Maurice; Sigrist, Manfred (2001). "The Intriguing Superconductivity of Strontium Ruthenate". Physics Today. 54 (1): 42–47. Bibcode:2001PhT....54a..42M. doi:10.1063/1.1349611. hdl:2433/49957. ISSN 0031-9228. S2CID 53644564.
  21. ^ Tanigaki, K.; Ebbesen, T. W.; Saito, S.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. (1991). "Superconductivity at 33 K in CsxRbyC60". Nature. 352 (6332): 222. Bibcode:1991Natur.352..222T. doi:10.1038/352222a0. S2CID 4335561.
  22. ^ Xiang, X. -D.; Hou, J. G.; Briceno, G.; Vareka, W. A.; Mostovoy, R.; Zettl, A.; Crespi, V. H.; Cohen, M. L. (1992). "Synthesis and Electronic Transport of Single Crystal K3C60". Science. 256 (5060): 1190–1. Bibcode:1992Sci...256.1190X. doi:10.1126/science.256.5060.1190. PMID 17795215. S2CID 11537235.
  23. ^ Rosseinsky, M.; Ramirez, A.; Glarum, S.; Murphy, D.; Haddon, R.; Hebard, A.; Palstra, T.; Kortan, A.; Zahurak, S.; Makhija, A. (1991). "Superconductivity at 28 K in RbxC60" (PDF). Physical Review Letters. 66 (21): 2830–2832. Bibcode:1991PhRvL..66.2830R. doi:10.1103/PhysRevLett.66.2830. PMID 10043627.
  24. ^ "First fully computer-designed superconductor". KurzweilAI. Retrieved 2013-10-11.
  25. ^ Inushima, T. (2006). "Electronic structure of superconducting InN". Science and Technology of Advanced Materials. 7: S112–S116. Bibcode:2006STAdM...7S.112I. doi:10.1016/j.stam.2006.06.004. Open access icon
  26. ^ Makise, K.; Kokubo, N.; Takada, S.; Yamaguti, T.; Ogura, S.; Yamada, K.; Shinozaki, B.; Yano, K.; Inoue, K.; Nakamura, H. (2008). "Superconductivity in transparent zinc-doped In2O3 films having low carrier density". Science and Technology of Advanced Materials. 9 (4): 044208. Bibcode:2008STAdM...9d4208M. doi:10.1088/1468-6996/9/4/044208. PMC 5099639. PMID 27878025. Open access icon
  27. ^ Schell, G.; Winter, H.; Rietschel, H.; Gompf, F. (1982). "Electronic structure and superconductivity in metal hexaborides". Physical Review B. 25 (3): 1589. Bibcode:1982PhRvB..25.1589S. doi:10.1103/PhysRevB.25.1589.
  28. ^ Sun, Hualei; Huo, Mengwu; Hu, Xunwu; Li, Jingyuan; Liu, Zengjia; Han, Yifeng; Tang, Lingyun; Mao, Zhongquan; Yang, Pengtao; Wang, Bosen; Cheng, Jinguang; Yao, Dao-Xin; Zhang, Guang-Ming; Wang, Meng (2023-09-21). "Signatures of superconductivity near 80 K in a nickelate under high pressure". Nature. 621 (7979): 493–498. arXiv:2305.09586. Bibcode:2023Natur.621..493S. doi:10.1038/s41586-023-06408-7. ISSN 0028-0836. PMID 37437603. S2CID 259843168.
  29. ^ Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. (2001). "Superconductivity at 39 K in magnesium diboride". Nature. 410 (6824): 63–4. Bibcode:2001Natur.410...63N. doi:10.1038/35065039. PMID 11242039. S2CID 4388025.
  30. ^ Bernhardt, K.-H. (1975). "Preparation and Superconducting Properties of Niobium Carbonitride Wires" (PDF). Z. Naturforsch. A. 30 (4): 528–532. Bibcode:1975ZNatA..30..528B. doi:10.1515/zna-1975-0422. S2CID 95077302.
  31. ^ Pessall, N.; Jones, C. K.; Johansen, and J. K. Hulm Bernhardt, H. A.; Hulm, J. K. (1965). "Critical Supercurrents in Niobium Carbonitrides". Appl. Phys. Lett. 7 (2): 38–39. Bibcode:1965ApPhL...7...38P. doi:10.1063/1.1754287.
  32. ^ Oya, G. I.; Saur, E. J. (1979). "Preparation of Nb3Ge films by chemical transport reaction and their critical properties". Journal of Low Temperature Physics. 34 (5–6): 569. Bibcode:1979JLTP...34..569O. doi:10.1007/BF00114941. S2CID 119846986.
  33. ^ Hulm, J. K.; Jones, C. K.; Hein, R. A.; Gibson, J. W. (1972). "Superconductivity in the TiO and NbO systems". Journal of Low Temperature Physics. 7 (3–4): 291. Bibcode:1972JLTP....7..291H. doi:10.1007/BF00660068. S2CID 122554738.
  34. ^ Matthias, B. T.; Geballe, T. H.; Geller, S.; Corenzwit, E. (1954). "Superconductivity of Nb3Sn". Physical Review. 95 (6): 1435. Bibcode:1954PhRv...95.1435M. doi:10.1103/PhysRev.95.1435.
  35. ^ a b Muranaka, T.; Kikuchi, Y.; Yoshizawa, T.; Shirakawa, N.; Akimitsu, J. (2008). "Superconductivity in carrier-doped silicon carbide". Science and Technology of Advanced Materials. 9 (4): 044204. Bibcode:2008STAdM...9d4204M. doi:10.1088/1468-6996/9/4/044204. PMC 5099635. PMID 27878021. Open access icon
  36. ^ Pierson, Hugh O. (1996). Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications. William Andrew. p. 193. ISBN 0-8155-1392-5.
  37. ^ Troitskii, V. N.; Marchenko, V. A.; Domashnev, I. A. (1982). "Magnetic properties of titanium nitride in superconducting state". Soviet Physics - Solid State. 24 (4): 689–690.
  38. ^ Pracht, Uwe S.; Scheffler, Marc; Dressel, Martin; Kalok, David F.; Strunk, Christoph; Baturina, Tatyana I. (2012-11-05). "Direct observation of the superconducting gap in a thin film of titanium nitride using terahertz spectroscopy". Physical Review B. 86 (18): 184503. arXiv:1210.6771. Bibcode:2012PhRvB..86r4503P. doi:10.1103/PhysRevB.86.184503. S2CID 118417332.
  39. ^ Tanaka, Shigeki; Handoko; Miyake, Atsushi; Kagayama, Tomoko; Shimizu, Katsuya; Böhmer, Anna. E.; Burger, Philipp; Hardy, Frederic; Meingast, Christoph (2012-01-01). "Superconducting and Martensitic Transitions of V3Si and Nb3Sn under High Pressure". Journal of the Physical Society of Japan. 81 (Suppl.B): SB026. Bibcode:2012JPSJ...81B..26T. doi:10.1143/JPSJS.81SB.SB026. ISSN 0031-9015.
  40. ^ Fisk, Z.; Schmidt, P. H.; Longinotti, L. D. (1976). "Growth of YB6 single crystals". Materials Research Bulletin. 11 (8): 1019. doi:10.1016/0025-5408(76)90179-3.
  41. ^ Szabó, P.; Kačmarčík, J.; Samuely, P.; Girovský, J. N.; Gabáni, S.; Flachbart, K.; Mori, T. (2007). "Superconducting energy gap of YB6 studied by point-contact spectroscopy". Physica C: Superconductivity. 460–462: 626–627. Bibcode:2007PhyC..460..626S. doi:10.1016/j.physc.2007.04.135.
  42. ^ a b Tsindlekht, M. I.; Genkin, V. M.; Leviev, G. I.; Felner, I.; Yuli, O.; Asulin, I.; Millo, O.; Belogolovskii, M. A.; Shitsevalova, N. Y. (2008). "Linear and nonlinear low-frequency electrodynamics of surface superconducting states in an yttrium hexaboride single crystal". Physical Review B. 78 (2): 024522. arXiv:0707.2211. Bibcode:2008PhRvB..78b4522T. doi:10.1103/PhysRevB.78.024522. S2CID 119740895.
  43. ^ Lengauer, W. (1990). "Characterization of nitrogen distribution profiles in fcc transition metal nitrides by means of Tc measurements". Surface and Interface Analysis. 15 (6): 377–382. doi:10.1002/sia.740150606.
  44. ^ Rosa, Priscila F. S.; Weiland, Ashley; Fender, Shannon S.; Scott, Brian L.; Ronning, Filip; Thompson, Joe D.; Bauer, Eric D.; Thomas, Sean M. (2022-05-23). "Single thermodynamic transition at 2 K in superconducting UTe2 single crystals". Communications Materials. 3 (1): 33. arXiv:2110.06200. Bibcode:2022CoMat...3...33R. doi:10.1038/s43246-022-00254-2. ISSN 2662-4443. S2CID 248970170.
  45. ^ Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J. (1987-01-30). "Superconductivity at 52.5 K in the Lanthanum-Barium-Copper-Oxide System". Science. 235 (4788): 567–569. Bibcode:1987Sci...235..567C. doi:10.1126/science.235.4788.567. ISSN 0036-8075. PMID 17758247. S2CID 32235782.
  46. ^ Malavasi, L.; Tamburini, U. Anselmi; Galinetto, P.; Ghigna, P.; Flor, G. (2001). "The High-Temperature Superconductor EuBa2Cu3O6 + x: Role of Thermal History on Microstructure and Superconducting Properties". Journal of Materials Synthesis and Processing. 9 (1): 31–37. doi:10.1023/A:1011334631235. S2CID 135739533.
  47. ^ Shi, Y; Babu, N Hari; Iida, K; Cardwell, D A (2008-02-01). "Superconducting properties of Gd-Ba-Cu-O single grains processed from a new, Ba-rich precursor compound". Journal of Physics: Conference Series. 97 (1): 012250. Bibcode:2008JPhCS..97a2250S. doi:10.1088/1742-6596/97/1/012250. ISSN 1742-6596.
  48. ^ Bernardini, F.; et al. (2008-12-03). "Iron-based superconductivity extended to the novel silicide LaFeSiH". Phys. Rev. B. 97 (10): 100504. arXiv:1701.05010. Bibcode:2018PhRvB..97j0504B. doi:10.1103/PhysRevB.97.100504. hdl:11584/247860. S2CID 119004395.
  49. ^ Drozdov, A. P.; Kong, P. P.; Minkov, V. S.; Besedin, S. P.; Kuzovnikov, M. A.; Mozaffari, S.; Balicas, L.; Balakirev, F. F.; Graf, D. E.; Prakapenka, V. B.; Greenberg, E.; Knyazev, D. A.; Tkacz, M.; Eremets, M. I. (May 2019). "Superconductivity at 250 K in lanthanum hydride under high pressures". Nature. 569 (7757): 528–531. arXiv:1812.01561. Bibcode:2019Natur.569..528D. doi:10.1038/s41586-019-1201-8. ISSN 0028-0836. PMID 31118520. S2CID 119231000.
  50. ^ Song, J; Fabbris, G; Bi, W; Haskel, D; Schilling, J.S. (2018-07-20). "Pressure-Induced Superconductivity in Elemental Ytterbium Metal". Physical Review Letters. 121 (3): 037004. arXiv:1801.03630. Bibcode:2018PhRvL.121c7004S. doi:10.1103/PhysRevLett.121.037004. PMID 30085803.

External links

  • A review of 700 potential superconductors Hosono, H.; Tanabe, K.; Takayama-Muromachi, E.; Kageyama, H.; Yamanaka, S.; Kumakura, H.; Nohara, M.; Hiramatsu, H.; Fujitsu, S. (2015). "Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides". Science and Technology of Advanced Materials. 16 (3): 033503. arXiv:1505.02240. Bibcode:2015STAdM..16c3503H. doi:10.1088/1468-6996/16/3/033503. PMC 5099821. PMID 27877784.
  • v
  • t
  • e
TheoriesCharacteristic parametersPhenomenaClassification
By magnetic response
By explanation
By critical temperature
By composition
Technological applicationsList of superconductors