Location parameter

Concept in statistics
(Learn how and when to remove this template message)

In statistics, a location parameter of a probability distribution is a scalar- or vector-valued parameter x 0 {\displaystyle x_{0}} , which determines the "location" or shift of the distribution. In the literature of location parameter estimation, the probability distributions with such parameter are found to be formally defined in one of the following equivalent ways:

A direct example of a location parameter is the parameter μ {\displaystyle \mu } of the normal distribution. To see this, note that the probability density function f ( x | μ , σ ) {\displaystyle f(x|\mu ,\sigma )} of a normal distribution N ( μ , σ 2 ) {\displaystyle {\mathcal {N}}(\mu ,\sigma ^{2})} can have the parameter μ {\displaystyle \mu } factored out and be written as:

g ( y μ | σ ) = 1 σ 2 π e 1 2 ( y σ ) 2 {\displaystyle g(y-\mu |\sigma )={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {y}{\sigma }}\right)^{2}}}

thus fulfilling the first of the definitions given above.

The above definition indicates, in the one-dimensional case, that if x 0 {\displaystyle x_{0}} is increased, the probability density or mass function shifts rigidly to the right, maintaining its exact shape.

A location parameter can also be found in families having more than one parameter, such as location–scale families. In this case, the probability density function or probability mass function will be a special case of the more general form

f x 0 , θ ( x ) = f θ ( x x 0 ) {\displaystyle f_{x_{0},\theta }(x)=f_{\theta }(x-x_{0})}

where x 0 {\displaystyle x_{0}} is the location parameter, θ represents additional parameters, and f θ {\displaystyle f_{\theta }} is a function parametrized on the additional parameters.

Definition[4]

Let f ( x ) {\displaystyle f(x)} be any probability density function and let μ {\displaystyle \mu } and σ > 0 {\displaystyle \sigma >0} be any given constants. Then the function

g ( x | μ , σ ) = 1 σ f ( x μ σ ) {\displaystyle g(x|\mu ,\sigma )={\frac {1}{\sigma }}f\left({\frac {x-\mu }{\sigma }}\right)}

is a probability density function.


The location family is then defined as follows:

Let f ( x ) {\displaystyle f(x)} be any probability density function. Then the family of probability density functions F = { f ( x μ ) : μ R } {\displaystyle {\mathcal {F}}=\{f(x-\mu ):\mu \in \mathbb {R} \}} is called the location family with standard probability density function f ( x ) {\displaystyle f(x)} , where μ {\displaystyle \mu } is called the location parameter for the family.

Additive noise

An alternative way of thinking of location families is through the concept of additive noise. If x 0 {\displaystyle x_{0}} is a constant and W is random noise with probability density f W ( w ) , {\displaystyle f_{W}(w),} then X = x 0 + W {\displaystyle X=x_{0}+W} has probability density f x 0 ( x ) = f W ( x x 0 ) {\displaystyle f_{x_{0}}(x)=f_{W}(x-x_{0})} and its distribution is therefore part of a location family.

Proofs

For the continuous univariate case, consider a probability density function f ( x | θ ) , x [ a , b ] R {\displaystyle f(x|\theta ),x\in [a,b]\subset \mathbb {R} } , where θ {\displaystyle \theta } is a vector of parameters. A location parameter x 0 {\displaystyle x_{0}} can be added by defining:

g ( x | θ , x 0 ) = f ( x x 0 | θ ) , x [ a x 0 , b x 0 ] {\displaystyle g(x|\theta ,x_{0})=f(x-x_{0}|\theta ),\;x\in [a-x_{0},b-x_{0}]}

it can be proved that g {\displaystyle g} is a p.d.f. by verifying if it respects the two conditions[5] g ( x | θ , x 0 ) 0 {\displaystyle g(x|\theta ,x_{0})\geq 0} and g ( x | θ , x 0 ) d x = 1 {\displaystyle \int _{-\infty }^{\infty }g(x|\theta ,x_{0})dx=1} . g {\displaystyle g} integrates to 1 because:

g ( x | θ , x 0 ) d x = a x 0 b x 0 g ( x | θ , x 0 ) d x = a x 0 b x 0 f ( x x 0 | θ ) d x {\displaystyle \int _{-\infty }^{\infty }g(x|\theta ,x_{0})dx=\int _{a-x_{0}}^{b-x_{0}}g(x|\theta ,x_{0})dx=\int _{a-x_{0}}^{b-x_{0}}f(x-x_{0}|\theta )dx}

now making the variable change u = x x 0 {\displaystyle u=x-x_{0}} and updating the integration interval accordingly yields:

a b f ( u | θ ) d u = 1 {\displaystyle \int _{a}^{b}f(u|\theta )du=1}

because f ( x | θ ) {\displaystyle f(x|\theta )} is a p.d.f. by hypothesis. g ( x | θ , x 0 ) 0 {\displaystyle g(x|\theta ,x_{0})\geq 0} follows from g {\displaystyle g} sharing the same image of f {\displaystyle f} , which is a p.d.f. so its image is contained in [ 0 , 1 ] {\displaystyle [0,1]} .

See also

References

  1. ^ Takeuchi, Kei (1971). "A Uniformly Asymptotically Efficient Estimator of a Location Parameter". Journal of the American Statistical Association. 66 (334): 292–301. doi:10.1080/01621459.1971.10482258. S2CID 120949417.
  2. ^ Huber, Peter J. (1992). "Robust estimation of a location parameter". Breakthroughs in Statistics. Springer Series in Statistics. Springer: 492–518. doi:10.1007/978-1-4612-4380-9_35. ISBN 978-0-387-94039-7.
  3. ^ Stone, Charles J. (1975). "Adaptive Maximum Likelihood Estimators of a Location Parameter". The Annals of Statistics. 3 (2): 267–284. doi:10.1214/aos/1176343056.
  4. ^ Casella, George; Berger, Roger (2001). Statistical Inference (2nd ed.). p. 116. ISBN 978-0534243128.
  5. ^ Ross, Sheldon (2010). Introduction to probability models. Amsterdam Boston: Academic Press. ISBN 978-0-12-375686-2. OCLC 444116127.
  • v
  • t
  • e
Statistics
Descriptive statistics
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
  • Z-test (normal)
  • Student's t-test
  • F-test
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
  • Category
  • icon Mathematics portal
  • Commons
  • WikiProject