Lunar precession

Lunar standstill: every 18.6 years, the declination range of the Moon reaches a maximum or minimum.

Lunar precession is a term used for three different precession motions related to the Moon. First, it can refer to change in orientation of the lunar rotational axis with respect to a reference plane, following the normal rules of precession followed by spinning objects. In addition, the orbit of the Moon undergoes two important types of precessional motion: apsidal and nodal.

Axial precession

The rotational axis of the Moon also undergoes precession. Since the Moon's axial tilt is only 1.5° with respect to the ecliptic (the plane of Earth's orbit around the Sun), this effect is small. Once every 18.6 years,[1] the lunar north pole describes a small circle around a point in the constellation Draco, while correspondingly, the lunar south pole describes a small circle around a point in the constellation Dorado. Similar to Earth, the Moon's axial precession is westwards [2] - whereas Apsidal precession is in the same direction as the rotation (meaning apsidal precession is eastward).

Apsidal precession

Apsidal precession occurs when the direction of the major axis of the Moon's elliptic orbit rotates once every 8.85 years in the same direction as the Moon's rotation itself. This image looks upwards depicting Earth's geographic south pole and the elliptical shape of the Moon's orbit (which is vastly exaggerated from its almost circular shape to make the precession evident) is rotating from white to greyer orbits.
  Moon ·   Earth
Top: Polar view; Bottom: Equatorial view