Marcinkiewicz–Zygmund inequality

In mathematics, the Marcinkiewicz–Zygmund inequality, named after Józef Marcinkiewicz and Antoni Zygmund, gives relations between moments of a collection of independent random variables. It is a generalization of the rule for the sum of variances of independent random variables to moments of arbitrary order. It is a special case of the Burkholder-Davis-Gundy inequality in the case of discrete-time martingales.

Statement of the inequality

Theorem [1][2] If X i {\displaystyle \textstyle X_{i}} , i = 1 , , n {\displaystyle \textstyle i=1,\ldots ,n} , are independent random variables such that E ( X i ) = 0 {\displaystyle \textstyle E\left(X_{i}\right)=0} and E ( | X i | p ) < + {\displaystyle \textstyle E\left(\left\vert X_{i}\right\vert ^{p}\right)<+\infty } , 1 p < + {\displaystyle \textstyle 1\leq p<+\infty } , then

A p E ( ( i = 1 n | X i | 2 ) p / 2 ) E ( | i = 1 n X i | p ) B p E ( ( i = 1 n | X i | 2 ) p / 2 ) {\displaystyle A_{p}E\left(\left(\sum _{i=1}^{n}\left\vert X_{i}\right\vert ^{2}\right)_{}^{p/2}\right)\leq E\left(\left\vert \sum _{i=1}^{n}X_{i}\right\vert ^{p}\right)\leq B_{p}E\left(\left(\sum _{i=1}^{n}\left\vert X_{i}\right\vert ^{2}\right)_{}^{p/2}\right)}

where A p {\displaystyle \textstyle A_{p}} and B p {\displaystyle \textstyle B_{p}} are positive constants, which depend only on p {\displaystyle \textstyle p} and not on the underlying distribution of the random variables involved.

The second-order case

In the case p = 2 {\displaystyle \textstyle p=2} , the inequality holds with A 2 = B 2 = 1 {\displaystyle \textstyle A_{2}=B_{2}=1} , and it reduces to the rule for the sum of variances of independent random variables with zero mean, known from elementary statistics: If E ( X i ) = 0 {\displaystyle \textstyle E\left(X_{i}\right)=0} and E ( | X i | 2 ) < + {\displaystyle \textstyle E\left(\left\vert X_{i}\right\vert ^{2}\right)<+\infty } , then

V a r ( i = 1 n X i ) = E ( | i = 1 n X i | 2 ) = i = 1 n j = 1 n E ( X i X ¯ j ) = i = 1 n E ( | X i | 2 ) = i = 1 n V a r ( X i ) . {\displaystyle \mathrm {Var} \left(\sum _{i=1}^{n}X_{i}\right)=E\left(\left\vert \sum _{i=1}^{n}X_{i}\right\vert ^{2}\right)=\sum _{i=1}^{n}\sum _{j=1}^{n}E\left(X_{i}{\overline {X}}_{j}\right)=\sum _{i=1}^{n}E\left(\left\vert X_{i}\right\vert ^{2}\right)=\sum _{i=1}^{n}\mathrm {Var} \left(X_{i}\right).}

See also

Several similar moment inequalities are known as Khintchine inequality and Rosenthal inequalities, and there are also extensions to more general symmetric statistics of independent random variables.[3]

Notes

  1. ^ J. Marcinkiewicz and A. Zygmund. Sur les fonctions indépendantes. Fund. Math., 28:60–90, 1937. Reprinted in Józef Marcinkiewicz, Collected papers, edited by Antoni Zygmund, Panstwowe Wydawnictwo Naukowe, Warsaw, 1964, pp. 233–259.
  2. ^ Yuan Shih Chow and Henry Teicher. Probability theory. Independence, interchangeability, martingales. Springer-Verlag, New York, second edition, 1988.
  3. ^ R. Ibragimov and Sh. Sharakhmetov. Analogues of Khintchine, Marcinkiewicz–Zygmund and Rosenthal inequalities for symmetric statistics. Scandinavian Journal of Statistics, 26(4):621–633, 1999.
  • v
  • t
  • e
Functional analysis (topicsglossary)
Spaces
Properties
TheoremsOperatorsAlgebrasOpen problemsApplicationsAdvanced topics
  • Category