NATO Submarine Rescue System

Project to develop an international submarine rescue system
NSRS in 2011.

The NATO Submarine Rescue System (NSRS) is a tri-national project to develop an international submarine rescue system. The system provides a rescue capability primarily to the partner nations of France, Norway and the United Kingdom, but also to NATO and allied nations and to any submarine equipped with a suitable mating surface around its hatches.[citation needed]

History

NSRS was designed and manufactured by Forum Energy Technologies' Subsea Division (NYSE Listed:FET formerly Perry Slingsby Systems).[1]

The NSRS entered service in 2008, replacing the UK's previous rescue system, the LR5. The complete system is fully air transportable in a variety of suitable aircraft (C17/C5/An124/A400M). It is capable of launch and recovery in a significant wave height of up to 5 metres (sea state 6) and can reach any distressed submarine (DISSUB) in 72-96 hours from the alert, dependent upon location. It has limited capability in ice-covered seas.

Rescue procedure

On receipt of a 'SUBSUNK' alert that a submarine is in difficulties, the submarine operator will initiate the NSRS call-out procedure. The intervention system, which is centred upon an off-the-shelf remotely operated vehicle (ROV) will mobilise to the scene about 24 hours in advance of the full rescue system. Once on-site it will locate[how?] the distressed submarine (DISSUB), establish communications, conduct damage assessment and prepare the DISSUB for rescue operations.

The Submarine Rescue Vehicle (SRV) along with a portable launch and recovery system (PLARS), support and operating equipment and the hyperbaric treatment complex (known as the Transfer Under Pressure (TUP) equipment) will arrive approximately 24 hours later. All equipment and personnel will be flown to the mobilisation port for embarkation on a suitable mobilisation ship. The embarkation will take less than 18 hours and the mobilisation ship will then sail to the scene where the SRV will be launched. The aim is to achieve time-to-first-rescue of 72 hours, with personnel being brought to the surface in groups of 12, and transferring them to the NSRS hyperbaric treatment facility if necessary.

The NSRS is based at HM Naval Base Clyde in the UK.

Intervention System and the Intervention Remotely Operated Vehicle (IROV)

The Intervention system comprises the ROV, the launch and recovery system and the control module. The vehicle is based on the Forum Energy Technologies (FET) PSSL Triton SP ROV which is in widespread commercial use and is fitted with variable vectored thrusting. It is capable of operating in depths of 1000m. It can carry a variety of tools to assist in removing debris and delivering emergency life support stores (ELSS) to the survivors through the escape/rescue hatch, in watertight pods, known as pod-posting.

Submarine Rescue Vehicle (SRV)

The SRV is a crewed submersible and was developed from previous rescue vehicles, notably LR5, developed and built by FET's Subsea Division brand Perry Slingsby Systems Ltd in North Yorkshire.[2] It is 10m long, weighs 30 tonnes and has an all-steel (NQ1), single piece hull. The craft is operated by a three-man crew (two pilots and a rescue chamber operator). It can operate at depths down to 610m and can mate with the rescue hatch seal at angles of up to 60 degrees in any direction. It also uses high-temperature batteries, of "Zebra" type. These enable it to stay submerged for up to 96 hours. Propulsion is provided by two 25kW units, with a further four smaller units being used for positioning. It is the latest generation of rescue vehicle and has diverless recovery, fibre-optic data communications and a self-contained breathing system developed by Divex (now part of James Fisher Defence).

Delivery of the complete system was achieved by October 2007. Trials and development of improved operating practices were completed in time for Exercise Bold Monarch in May 2008. Full operational capability was attained in March 2011. NSRS has operated from numerous mother ships and exercised to bottomed diesel submarines of NATO nations as well as those of Russia and Sweden. In 2013 NSRS achieved a first by conducting a full rescue cycle with the nuclear attack submarine HMS Astute, which was suspended mid-water below large mooring buoys. This success was repeated in April 2015 in the Mediterranean Sea to the French nuclear submarine Rubis.

Portable Launch and Recovery System (PLARS)

The PLARS comprises a combined SRV catcher and stabilisation system and is designed for operation in high sea states (up to sea state 6). The system is air transportable in C-130 Hercules and the A400M. It uses a constant tension winch system for maintaining hawse tension in a wide range of sea states.

Transfer Under Pressure (TUP) System

The TUP system is a fully autonomous and air transportable hyperbaric treatment facility that provides full decompression and medical support for up to 72 personnel simultaneously from 6 bar to ambient pressure. It comprises a reception chamber, two decompression chambers and a central control position with full life-support and environmental control in conditions from -30°C to +60°C.

Built and put into service by Rolls-Royce Holdings, the NSRS will be transferred to James Fisher Defence in July 2015.[3]

See also

References

  1. ^ "Submarine Rescue Systems".
  2. ^ "Submarine Rescue Systems". Forum Energy Technologies, Inc. Retrieved 2023-02-16.
  3. ^ "James Fisher and Sons PLC | NATO Submarine Rescue System".

External links

Wikimedia Commons has media related to NATO Submarine Rescue System.
  • Ismerlo NSRS page [1]
  • Fact sheet [2]
  • v
  • t
  • e
Basic equipment
Breathing gas
Buoyancy and
trim equipment
Decompression
equipment
Diving suit
Helmets
and masks
Instrumentation
Mobility
equipment
Safety
equipment
Underwater
breathing
apparatus
Open-circuit
scuba
Diving rebreathers
Surface-supplied
diving equipment
Diving
equipment
manufacturers
Access equipment
Breathing gas
handling
Decompression
equipment
Platforms
Underwater
habitat
Remotely operated
underwater vehicles
Safety equipment
General
Activities
Competitions
Equipment
Freedivers
Hazards
Historical
Organisations
Occupations
Military
diving
Military
diving
units
Underwater
work
Salvage diving
  • SS Egypt
  • Kronan
  • La Belle
  • SS Laurentic
  • RMS Lusitania
  • Mars
  • Mary Rose
  • USS Monitor
  • HMS Royal George
  • Vasa
Diving
contractors
Tools and
equipment
Underwater
weapons
Underwater
firearm
Specialties
Diver
organisations
Diving tourism
industry
Diving events
and festivals
Diving
hazards
Consequences
Diving
procedures
Risk
management
Diving team
Equipment
safety
Occupational
safety and
health
Diving
disorders
Pressure
related
Oxygen
Inert gases
Carbon dioxide
Breathing gas
contaminants
Immersion
related
Treatment
Personnel
Screening
Research
Researchers in
diving physiology
and medicine
Diving medical
research
organisations
Law
Archeological
sites
Underwater art
and artists
Engineers
and inventors
Historical
equipment
Diver
propulsion
vehicles
Military and
covert operations
  • Raid on Alexandria (1941)
  • Sinking of the Rainbow Warrior
Scientific projects
Awards and events
Incidents
Dive boat incidents
  • Sinking of MV Conception
Diver rescues
Early diving
Freediving fatalities
Offshore
diving incidents
  • Byford Dolphin diving bell accident
  • Drill Master diving accident
  • Star Canopus diving accident
  • Stena Seaspread diving accident
  • Venture One diving accident
  • Waage Drill II diving accident
  • Wildrake diving accident
Professional
diving fatalities
Scuba diving
fatalities
Publications
Manuals
  • NOAA Diving Manual
  • U.S. Navy Diving Manual
  • Basic Cave Diving: A Blueprint for Survival
  • Underwater Handbook
  • Bennett and Elliott's physiology and medicine of diving
  • Encyclopedia of Recreational Diving
  • The new science of skin and scuba diving
  • Professional Diver's Handbook
  • Basic Scuba
Standards and
Codes of Practice
General non-fiction
Research
Dive guides
Training and registration
Diver
training
Skills
Recreational
scuba
certification
levels
Core diving skills
Leadership skills
Specialist skills
Diver training
certification
and registration
organisations
Commercial diver
certification
authorities
Commercial diving
schools
Free-diving
certification
agencies
Recreational
scuba
certification
agencies
Scientific diver
certification
authorities
Technical diver
certification
agencies
Cave
diving
Military diver
training centres
Military diver
training courses
Surface snorkeling
Snorkeling/breath-hold
Breath-hold
Open Circuit Scuba
Rebreather
  • Underwater photography
Sports governing
organisations
and federations
Competitions
Pioneers
of diving
Underwater
scientists
archaeologists and
environmentalists
Scuba record
holders
Underwater
filmmakers
and presenters
Underwater
photographers
Underwater
explorers
Aquanauts
Writers and journalists
Rescuers
Frogmen
Commercial salvors
Diving
physics
Diving
physiology
Decompression
theory
Diving
environment
Classification
Impact
Other
Deep-submergence
vehicle
  • Aluminaut
  • DSV Alvin
  • American submarine NR-1
  • Bathyscaphe
    • Archimède
    • FNRS-2
    • FNRS-3
    • Harmony class bathyscaphe
    • Sea Pole-class bathyscaphe
    • Trieste II
  • Deepsea Challenger
  • Ictineu 3
  • JAGO
  • Jiaolong
  • Konsul-class submersible
  • Limiting Factor
  • Russian submarine Losharik
  • Mir
  • Nautile
  • Pisces-class deep submergence vehicle
  • DSV Sea Cliff
  • DSV Shinkai
  • DSV Shinkai 2000
  • DSV Shinkai 6500
  • DSV Turtle
  • DSV-5 Nemo
Submarine rescue
Deep-submergence
rescue vehicle
Submarine escape
Escape set
Special
interest
groups
Neutral buoyancy
facilities for
Astronaut training
Other