Nerve growth factor

Mammalian protein found in Homo sapiens
NGF
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

4ZBN, 1SG1, 1WWW, 2IFG, 4EDW, 4EDX

Identifiers
AliasesNGF, Beta-HSAN5, NGFB, nerve growth factor
External IDsOMIM: 162030 MGI: 97321 HomoloGene: 1876 GeneCards: NGF
Gene location (Human)
Chromosome 1 (human)
Chr.Chromosome 1 (human)[1]
Chromosome 1 (human)
Genomic location for NGF
Genomic location for NGF
Band1p13.2Start115,285,904 bp[1]
End115,338,770 bp[1]
Gene location (Mouse)
Chromosome 3 (mouse)
Chr.Chromosome 3 (mouse)[2]
Chromosome 3 (mouse)
Genomic location for NGF
Genomic location for NGF
Band3 F2.2|3 45.25 cMStart102,377,235 bp[2]
End102,428,329 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • left uterine tube

  • ascending aorta

  • left ventricle

  • left coronary artery

  • right coronary artery

  • tibial nerve

  • canal of the cervix

  • pericardium

  • gastric mucosa

  • myometrium
Top expressed in
  • submandibular gland

  • right ventricle

  • middle ear

  • aortic valve

  • ascending aorta

  • lip

  • superior frontal gyrus

  • myocardium of ventricle

  • Eustachian tube

  • surface ectoderm
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
  • peptidase inhibitor activity
  • enzyme inhibitor activity
  • protein binding
  • metalloendopeptidase inhibitor activity
  • nerve growth factor receptor binding
  • growth factor activity
  • signaling receptor binding
Cellular component
  • endosome
  • Golgi lumen
  • extracellular region
  • cytoplasmic vesicle
  • extracellular space
  • cytosol
  • synaptic vesicle
  • axon
  • dendrite
Biological process
  • negative regulation of neuron apoptotic process
  • regulation of neuron differentiation
  • neuron projection morphogenesis
  • negative regulation of peptidase activity
  • neurotrophin TRK receptor signaling pathway
  • cell-cell signaling
  • negative regulation of apoptotic process
  • regulation of cysteine-type endopeptidase activity involved in apoptotic process
  • positive regulation of axonogenesis
  • positive regulation of gene expression
  • positive regulation of apoptotic process
  • nerve growth factor processing
  • extrinsic apoptotic signaling pathway via death domain receptors
  • phosphatidylinositol-mediated signaling
  • negative regulation of cysteine-type endopeptidase activity involved in apoptotic process
  • microtubule-based movement
  • activation of cysteine-type endopeptidase activity involved in apoptotic process
  • positive regulation of Ras protein signal transduction
  • transmembrane receptor protein tyrosine kinase signaling pathway
  • peripheral nervous system development
  • memory
  • negative regulation of cell population proliferation
  • regulation of signaling receptor activity
  • nerve development
  • nerve growth factor signaling pathway
  • positive regulation of DNA binding
  • positive regulation of neuron differentiation
  • positive regulation of collateral sprouting
  • modulation of chemical synaptic transmission
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

4803

18049

Ensembl

ENSG00000134259

ENSMUSG00000027859

UniProt

P01138

P01139

RefSeq (mRNA)

NM_002506

NM_001112698
NM_013609

RefSeq (protein)

NP_002497

NP_001106168
NP_038637

Location (UCSC)Chr 1: 115.29 – 115.34 MbChr 3: 102.38 – 102.43 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Nerve growth factor (NGF) is a neurotrophic factor and neuropeptide primarily involved in the regulation of growth, maintenance, proliferation, and survival of certain target neurons. It is perhaps the prototypical growth factor, in that it was one of the first to be described. Since it was first isolated by Nobel Laureates Rita Levi-Montalcini and Stanley Cohen in 1956, numerous biological processes involving NGF have been identified, two of them being the survival of pancreatic beta cells and the regulation of the immune system.

Structure

NGF is initially in a 7S, 130-kDa complex of 3 proteins – Alpha-NGF, Beta-NGF, and Gamma-NGF (2:1:2 ratio) when expressed. This form of NGF is also referred to as proNGF (NGF precursor). The gamma subunit of this complex acts as a serine protease, and cleaves the N-terminal of the beta subunit, thereby activating the protein into functional NGF.

The term nerve growth factor usually refers to the 2.5S, 26-kDa beta subunit of the protein, the only component of the 7S NGF complex that is biologically active (i.e. acting as a signaling molecule).

Function

As its name suggests, NGF is involved primarily in the growth, as well as the maintenance, proliferation, and survival of nerve cells (neurons) and is critical for the survival and maintenance of sympathetic and sensory neurons as they undergo apoptosis in its absence.[5] However, several recent studies suggest that NGF is also involved in pathways besides those regulating the life cycle of neurons.

Neuronal proliferation

NGF can drive the expression of genes such as bcl-2 by binding to the Tropomyosin receptor kinase A, which stimulates the proliferation and survival of the target neuron.

High affinity binding between proNGF, sortilin, and p75NTR can result in either survival or programmed cell death. Study results indicate that superior cervical ganglia neurons that express both p75NTR and TrkA die when treated with proNGF,[6] while NGF treatment of these same neurons results in survival and axonal growth. Survival and PCD mechanisms are mediated through adaptor protein binding to the death domain of the p75NTR cytoplasmic tail. Survival occurs when recruited cytoplasmic adaptor proteins facilitate signal transduction through tumor necrosis factor receptor members such as TRAF6, which results in the release of nuclear factor κB (NF-κB) transcription activator.[7] NF-κB regulates nuclear gene transcription to promote cell survival. Alternatively, programmed cell death occurs when TRAF6 and neurotrophin receptor interacting factor (NRIF) are both recruited to activate c-Jun N-terminal kinase (JNK); which phosphorylates c-Jun. The activated transcription factor c-Jun regulates nuclear transcription via AP-1 to increase pro-apoptotic gene transcription.[7]

Proliferation of pancreatic beta cells

There is evidence that pancreatic beta cells express both the TrkA and p75NTR receptors of NGF. It has been shown that the withdrawal of NGF induces apoptosis in pancreatic beta cells, signifying that NGF may play a critical role in the maintenance and survival of pancreatic beta cells.[8]

Regulation of the immune system

NGF plays a critical role in the regulation of both innate and acquired immunity. In the process of inflammation, NGF is released in high concentrations by mast cells, and induces axonal outgrowth in nearby nociceptive neurons. This leads to increased pain perception in areas under inflammation. In acquired immunity, NGF is produced by the Thymus as well as CD4+ T cell clones, inducing a cascade of maturation of T cells under infection.[9]

Ovulation

NGF is abundant in seminal plasma. Recent studies have found that it induces ovulation in some mammals e.g. "induced" ovulators, such as llamas. Surprisingly, research showed that these induced animals will also ovulate when semen from on-schedule or "spontaneous" ovulators, such as cattle is used. Its significance in humans is unknown. It was previously dubbed ovulation-inducing factor (OIF) in semen before it was identified as beta-NGF in 2012.[10]

Mechanism of action

NGF binds with at least two classes of receptors: the tropomyosin receptor kinase A (TrkA) and low-affinity NGF receptor (LNGFR/p75NTR). Both are associated with neurodegenerative disorders.

When NGF binds to the TrkA receptor, it drives the homodimerization of the receptor, which in turn causes the autophosphorylation of the tyrosine kinase segment.[11] The tropomyosin receptor kinase A receptor has five extracellular domains, and the fifth domain is sufficient in binding NGF.[12] Once bound, the complex undergoes endocytosis and activates the NGF transcriptional program, following two major pathways, the Ras/MAPK pathway and the PI3K/Akt pathway.[11] The binding of NGF to TrkA also leads to the activation of PI 3-kinase, ras, and PLC signaling pathways.[13] Alternatively, the p75NTR receptor can form a heterodimer with TrkA, which has higher affinity and specificity for NGF.

Studies suggest that NGF circulates throughout the entire body via the blood plasma, and is important for the overall maintenance of homeostasis.[14]

Neuron survival

Binding interaction between NGF and the TrkA receptor facilitates receptor dimerization and tyrosine residue phosphorylation of the cytoplasmic tail by adjacent Trk receptors.[15] Trk receptor phosphorylation sites operate as Shc adaptor protein docking sites, which undergo phosphorylation by the TrkA receptor[7] Once the cytoplasmic adaptor protein (Shc) is phosphorylated by the receptor cytoplasmic tail, cell survival is initiated through several intracellular pathways.

One major pathway leads to the activation of the serine/threonine kinase, Akt. This pathway begins with the Trk receptor complex-recruitment of a second adaptor protein called growth factor-receptor bound protein-2 (Grb2) along with a docking protein called Grb2-associated Binder-1 (GAB1).[7] Subsequently, phosphatidylinositol-3 kinase (PI3K) is activated, resulting in Akt kinase activation.[7] Study results have shown that blocking PI3K or Akt activity results in death of sympathetic neurons in culture, regardless of NGF presence.[16] However, if either kinase is constitutively active, neurons survive even without NGF.[16]

A second pathway contributing to cell survival occurs through activation of the mitogen-activated protein kinase (MAPK) kinase. In this pathway, recruitment of a guanine nucleotide exchange factor by the adaptor and docking proteins leads to activation of a membrane-associated G-protein known as Ras.[7] The guanine nucleotide exchange factor mediates Ras activation through the GDP-GTP exchange process. The active Ras protein phosphorylates several proteins, along with the serine/threonine kinase, Raf.[7] Raf in turn activates the MAPK cascade to facilitate ribosomal s6 kinase (RSK) activation and transcriptional regulation.[7]

Both Akt and RSK, components of the PI3K-Akt and MAPK pathways respectively, act to phosphorylate the cyclic AMP response element binding protein (CREB) transcription factor.[7] Phosphorylated CREB translocates into the nucleus and mediates increased expression of anti-apoptotic proteins,[7] thus promoting NGF-mediated cell survival. However, in the absence of NGF, the expression of pro-apoptotic proteins is increased when the activation of cell death-promoting transcription factors such as c-Jun are not suppressed by the aforementioned NGF-mediated cell survival pathways.[7]

History

Rita Levi-Montalcini and Stanley Cohen discovered NGF in the 1950s while faculty members at Washington University in St. Louis. The critical discover was done by Levi-Montalcini and Hertha Meyer at the Carlos Chagas Filho Biophysics Institute of the Federal University of Rio de Janeiro in 1952. Their publication in 1954[17] became the definitive proof for the existence of the protein.[18][19] Levi-Montalcini later remarked:

The tumor had given a first hint of its existence in St. Louis but it was in Rio de Janeiro that it revealed itself, and it did so in a theatrical and grand way, as if spurred by the bright atmosphere of that explosive and exhuberant manifestation of life that is the Carnival in Rio.[20]

However, its discovery, along with the discovery of other neurotrophins, was not widely recognized until 1986, when it won the Nobel Prize in Physiology or Medicine.[21][22][23]

Studies in 1971 determined the primary structure of NGF. This eventually led to the discovery of the NGF gene.

NGF is abundant in seminal plasma. Recent studies have found that it induces ovulation in some mammals.[24] Nerve Growth Factors (NGF) were initially discovered due to their actions during development, but NGF are now known to be involved in the function throughout the life of the animal.[25]

Interactions

Nerve growth factor has been shown to interact with Tropomyosin receptor kinase A.[26]

Clinical Use

NGF, specifically mouse (murine) nerve growth factor, has been available as a licensed medicine in China since 2003.[27] There is evidence of improved patient outcomes for several diseases of the nervous system, including acute intracerebral hemorrhage,[28] global developmental delay,[29] optic atrophy,[30] epilepsy [31] and cerebral palsy.[32] This is significant as there are few medicines which can treat injuries and diseases of the nervous system. Research and clinical use outside of China is limited despite a large body of evidence supporting its use.

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000134259 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000027859 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Freeman RS, Burch RL, Crowder RJ, Lomb DJ, Schoell MC, Straub JA, Xie L (2004). "NGF deprivation-induced gene expression: After ten years, where do we stand?". NGF and Related Molecules in Health and Disease. Progress in Brain Research. Vol. 146. pp. 111–26. doi:10.1016/S0079-6123(03)46008-1. ISBN 978-0-444-51472-1. PMID 14699960.
  6. ^ Lee R, Kermani P, Teng KK, Hempstead BL (Nov 2001). "Regulation of cell survival by secreted proneurotrophins". Science. 294 (5548): 1945–48. Bibcode:2001Sci...294.1945L. doi:10.1126/science.1065057. PMID 11729324. S2CID 872149.
  7. ^ a b c d e f g h i j k Sanes DH, Thomas AR, Harris WA (2011). "Naturally-occurring neuron death". Development of the Nervous System, Third Edition. Boston: Academic Press. pp. 171–208. ISBN 978-0-12-374539-2.
  8. ^ Pierucci D, Cicconi S, Bonini P, Ferrelli F, Pastore D, Matteucci C, Marselli L, Marchetti P, Ris F, Halban P, Oberholzer J, Federici M, Cozzolino F, Lauro R, Borboni P, Marlier LN (Oct 2001). "NGF-withdrawal induces apoptosis in pancreatic beta cells in vitro". Diabetologia. 44 (10): 1281–95. doi:10.1007/s001250100650. PMID 11692177.
  9. ^ Lambiase A, Bracci-Laudiero L, Bonini S, Bonini S, Starace G, D'Elios MM, De Carli M, Aloe L (Sep 1997). "Human CD4+ T cell clones produce and release nerve growth factor and express high-affinity nerve growth factor receptors". The Journal of Allergy and Clinical Immunology. 100 (3): 408–14. doi:10.1016/s0091-6749(97)70256-2. PMID 9314355.
  10. ^ Ratto MH, Leduc YA, Valderrama XP, van Straaten KE, Delbaere LT, Pierson RA, Adams GP (Sep 2012). "The nerve of ovulation-inducing factor in semen". Proceedings of the National Academy of Sciences of the United States of America. 109 (37): 15042–47. Bibcode:2012PNAS..10915042R. doi:10.1073/pnas.1206273109. PMC 3443178. PMID 22908303.
    • Meghan Rosen (August 20, 2012). "Ovulation spurred by newfound semen ingredient". Science News. Archived from the original on 2012-08-24.
  11. ^ a b Stoleru B, Popescu A, Tache D, Neamtu O, Emami G, Tataranu L, Buteica A, Dricu A, Purcaru S (2013). "Tropomyosin-Receptor-Kinases Signaling in the Nervous System". Maedica. 8 (1): 43–48. PMC 3749761. PMID 24023598.
  12. ^ Wiesmann C, Ultsch MH, Bass SH, de Vos AM (September 1999). "Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor". Nature. 401 (6749): 184–88. Bibcode:1999Natur.401..184W. doi:10.1038/43705. PMID 10490030. S2CID 4337786.
  13. ^ Marlin MC, Li G (2015). Biogenesis and Function of the NGF/TrkA Signaling Endosome. International Review of Cell and Molecular Biology. Vol. 314. pp. 239–57. doi:10.1016/bs.ircmb.2014.10.002. ISBN 978-0-12-802283-2. PMC 4307610. PMID 25619719.
  14. ^ Levi-Montalcini R (2004). "The nerve growth factor and the neuroscience chess board". NGF and Related Molecules in Health and Disease. Progress in Brain Research. Vol. 146. pp. 525–27. doi:10.1016/s0079-6123(03)46033-0. ISBN 978-0-444-51472-1. PMID 14699984.
  15. ^ Kaplan DR, Martin-Zanca D, Parada LF (Mar 1991). "Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF". Nature. 350 (6314): 158–60. Bibcode:1991Natur.350..158K. doi:10.1038/350158a0. PMID 1706478. S2CID 4241996.
  16. ^ a b Crowder RJ, Freeman RS (Apr 1998). "Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons". The Journal of Neuroscience. 18 (8): 2933–43. doi:10.1523/JNEUROSCI.18-08-02933.1998. PMC 6792598. PMID 9526010.
  17. ^ Levi-Montalcini R, Meyer H, Hamburger V (1954). "In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo". Cancer Research. 14 (1): 49–57. ISSN 0008-5472. PMID 13126933. Archived from the original on 2024-01-11. Retrieved 2024-01-11.
  18. ^ Levi-Montalcini R, Calissano P (1979). "The Nerve-Growth Factor". Scientific American. 240 (6): 68–77. Bibcode:1979SciAm.240f..68L. doi:10.1038/scientificamerican0679-68. ISSN 0036-8733. JSTOR 24965219. PMID 472707. Archived from the original on 2024-01-11. Retrieved 2024-01-11.
  19. ^ Levi-Montalcini R (1998-11-16). "The saga of the nerve growth factor". NeuroReport. 9 (16): R71–83. ISSN 0959-4965. PMID 9858356. Archived from the original on 2024-01-11. Retrieved 2024-01-11.
  20. ^ Levi-Montalcini R (1987-09-04). "The nerve growth factor 35 years later". Science. 237 (4819): 1154–1162. Bibcode:1987Sci...237.1154L. doi:10.1126/science.3306916. ISSN 0036-8075. PMID 3306916. Archived from the original on 2024-01-11. Retrieved 2024-01-11.
  21. ^ "The 1986 Nobel Prize in Physiology or Medicine for discoveries of growth factors". Archived from the original on 2008-12-02. Retrieved 2005-11-30.
  22. ^ Presentation Speech by Professor Kerstin Hall The Nobel Prize in Physiology or Medicine 1986 Archived 2008-10-13 at the Wayback Machine
  23. ^ "Rita Levi-Montalcini – Nobel Lecture". Archived from the original on 2008-08-28. Retrieved 2005-11-30.
  24. ^ "Ovulation spurred by newfound semen ingredient". Archived from the original on 2021-10-28. Retrieved 2021-10-28.
  25. ^ Adelman, George. Encyclopedia of Neuroscience . Boston: Birkhhaeuser, 1987. Print.[ISBN missing][page needed]
  26. ^ Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen C, Kliemannel M, Schwarz E, Willnow TE, Hempstead BL, Petersen CM (Feb 2004). "Sortilin is essential for proNGF-induced neuronal cell death". Nature. 427 (6977): 843–48. Bibcode:2004Natur.427..843N. doi:10.1038/nature02319. PMID 14985763. S2CID 4343450.
  27. ^ Zhao M, Li Xy, Xu Cy, Zou Lp (2015). "Effcacy and safety of nerve growth factor for the treatment of neurological diseases: a meta-analysis of 64 randomized controlled trials involving 6,297 patients". Neural Regeneration Research. 10 (5): 819–828. doi:10.4103/1673-5374.156989. ISSN 1673-5374. PMC 4468778. PMID 26109961.
  28. ^ An S, Jia Y, Tian Y, Sun J, Wei Y, Yue S, Lin L, Wei Y, Li Y, Lei P, Zhang J, Jiang R (November 2020). "Mouse nerve growth factor promotes neurological recovery in patients with acute intracerebral hemorrhage: A proof-of-concept study". Journal of the Neurological Sciences. 418: 117069. doi:10.1016/j.jns.2020.117069. PMID 32798840. S2CID 220844712.
  29. ^ Yuan JJ, Wu D, Wang WW, Duan J, Xu XY, Tang JL (2021). "鼠神经生长因子治疗全面性发育迟缓的前瞻性随机对照研究". 中国当代儿科杂志 (in Chinese). 23 (8): 786–790. doi:10.7499/j.issn.1008-8830.2106042. ISSN 1008-8830. PMC 8428910. PMID 34511166. Archived from the original on 2023-01-20. Retrieved 2024-02-23.
  30. ^ Ping L (2022). "鼠神经生长因子在视神经萎缩临床治疗中的应用效果". 黑龙江医学. 46 (10): 1164–1166+1170. ISSN 1004-5775.
  31. ^ Li YF, Jinghou J (2023). "鼠神经生长因子联合左乙拉西坦对局灶性发作型癫痫患儿疾病发作情况及神经细胞因子水平的影响". 临床医学研究与实践. 8 (23): 65–68. ISSN 2096-1413.
  32. ^ 赵会玲, 冯欢欢, 李晓捷, 庞伟 (2019-08-20). "注射用鼠神经生长因子联合康复训练治疗脑性瘫痪患儿的临床疗效". 中华实用儿科临床杂志 (in Chinese). 34 (16): 1237–1240. doi:10.3760/cma.j.issn.2095-428X.2019.16.011. ISSN 2095-428X.

External links

  • Nerve+Growth+Factor at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  • Overview of all the structural information available in the PDB for UniProt: P01138 (Human Beta-nerve growth factor) at the PDBe-KB.
  • Overview of all the structural information available in the PDB for UniProt: P01139 (Mouse Beta-nerve growth factor) at the PDBe-KB.
  • v
  • t
  • e
  • 1bet: NEW PROTEIN FOLD REVEALED BY A 2.3 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF NERVE GROWTH FACTOR
    1bet: NEW PROTEIN FOLD REVEALED BY A 2.3 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF NERVE GROWTH FACTOR
  • 1btg: CRYSTAL STRUCTURE OF BETA NERVE GROWTH FACTOR AT 2.5 A RESOLUTION IN C2 SPACE GROUP WITH ZN IONS BOUND
    1btg: CRYSTAL STRUCTURE OF BETA NERVE GROWTH FACTOR AT 2.5 A RESOLUTION IN C2 SPACE GROUP WITH ZN IONS BOUND
  • 1sg1: Crystal Structure of the Receptor-Ligand Complex between Nerve Growth Factor and the Common Neurotrophin Receptor p75
    1sg1: Crystal Structure of the Receptor-Ligand Complex between Nerve Growth Factor and the Common Neurotrophin Receptor p75
  • 1www: NGF IN COMPLEX WITH DOMAIN 5 OF THE TRKA RECEPTOR
    1www: NGF IN COMPLEX WITH DOMAIN 5 OF THE TRKA RECEPTOR
  • 2ifg: Structure of the extracellular segment of human TRKA in complex with nerve growth factor
    2ifg: Structure of the extracellular segment of human TRKA in complex with nerve growth factor
  • v
  • t
  • e
Endocrine
glands
Hypothalamic–
pituitary
Hypothalamus
Posterior pituitary
Anterior pituitary
Adrenal axis
Thyroid
Parathyroid
Gonadal axis
Testis
Ovary
Placenta
Pancreas
Pineal gland
Other
Thymus
Digestive system
Stomach
Duodenum
Ileum
Liver/other
Adipose tissue
Skeleton
Kidney
Heart
  • v
  • t
  • e
Angiopoietin
  • Kinase inhibitors: Altiratinib
  • CE-245677
  • Rebastinib
CNTF
EGF (ErbB)
EGF
(ErbB1/HER1)
ErbB2/HER2
  • Agonists: Unknown/none
ErbB3/HER3
ErbB4/HER4
FGF
FGFR1
FGFR2
  • Antibodies: Aprutumab
  • Aprutumab ixadotin
FGFR3
FGFR4
Unsorted
HGF (c-Met)
IGF
IGF-1
  • Kinase inhibitors: BMS-754807
  • Linsitinib
  • NVP-ADW742
  • NVP-AEW541
  • OSl-906
IGF-2
  • Antibodies: Dusigitumab
  • Xentuzumab (against IGF-1 and IGF-2)
Others
  • Cleavage products/derivatives with unknown target: Glypromate (GPE, (1-3)IGF-1)
  • Trofinetide
LNGF (p75NTR)
  • Aptamers: Against NGF: RBM-004
  • Decoy receptors: LEVI-04 (p75NTR-Fc)
PDGF
RET (GFL)
GFRα1
GFRα2
GFRα3
GFRα4
Unsorted
  • Kinase inhibitors: Agerafenib
SCF (c-Kit)
TGFβ
  • See here instead.
Trk
TrkA
  • Negative allosteric modulators: VM-902A
  • Aptamers: Against NGF: RBM-004
  • Decoy receptors: ReN-1820 (TrkAd5)
TrkB
TrkC
VEGF
Others