Omnitruncated 6-simplex honeycomb

Omnitruncated 6-simplex honeycomb
(No image)
Type Uniform honeycomb
Family Omnitruncated simplectic honeycomb
Schläfli symbol {3[8]}
Coxeter–Dynkin diagrams
Facets
t0,1,2,3,4,5{3,3,3,3,3}
Vertex figure
Irr. 6-simplex
Symmetry A ~ 7 {\displaystyle {\tilde {A}}_{7}} ×14, [7[3[7]]]
Properties vertex-transitive

In six-dimensional Euclidean geometry, the omnitruncated 6-simplex honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 6-simplex facets.

The facets of all omnitruncated simplectic honeycombs are called permutahedra and can be positioned in n+1 space with integral coordinates, permutations of the whole numbers (0,1,..,n).

A*
6
lattice

The A*
6
lattice (also called A7
6
) is the union of seven A6 lattices, and has the vertex arrangement of the dual to the omnitruncated 6-simplex honeycomb, and therefore the Voronoi cell of this lattice is the omnitruncated 6-simplex.

= dual of

Related polytopes and honeycombs

This honeycomb is one of 17 unique uniform honeycombs[1] constructed by the A ~ 6 {\displaystyle {\tilde {A}}_{6}} Coxeter group, grouped by their extended symmetry of the Coxeter–Dynkin diagrams:

A6 honeycombs
Heptagon
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycombs
a1 [3[7]] A ~ 6 {\displaystyle {\tilde {A}}_{6}}

i2 [[3[7]]] A ~ 6 {\displaystyle {\tilde {A}}_{6}} ×2

1

2

r14 [7[3[7]]] A ~ 6 {\displaystyle {\tilde {A}}_{6}} ×14

3

See also

Regular and uniform honeycombs in 6-space:

Notes

  1. ^ * Weisstein, Eric W. "Necklace". MathWorld., OEIS sequence A000029 18-1 cases, skipping one with zero marks

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • v
  • t
  • e
Fundamental convex regular and uniform honeycombs in dimensions 2–9
Space Family A ~ n 1 {\displaystyle {\tilde {A}}_{n-1}} C ~ n 1 {\displaystyle {\tilde {C}}_{n-1}} B ~ n 1 {\displaystyle {\tilde {B}}_{n-1}} D ~ n 1 {\displaystyle {\tilde {D}}_{n-1}} G ~ 2 {\displaystyle {\tilde {G}}_{2}} / F ~ 4 {\displaystyle {\tilde {F}}_{4}} / E ~ n 1 {\displaystyle {\tilde {E}}_{n-1}}
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133 • 331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152 • 251 • 521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
E10 Uniform 10-honeycomb {3[11]} δ11 11 11
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k2 • 2k1 • k21