Parabolic Lie algebra

In algebra, a parabolic Lie algebra p {\displaystyle {\mathfrak {p}}} is a subalgebra of a semisimple Lie algebra g {\displaystyle {\mathfrak {g}}} satisfying one of the following two conditions:

  • p {\displaystyle {\mathfrak {p}}} contains a maximal solvable subalgebra (a Borel subalgebra) of g {\displaystyle {\mathfrak {g}}} ;
  • the orthogonal complement with respect to the Killing form of p {\displaystyle {\mathfrak {p}}} in g {\displaystyle {\mathfrak {g}}} is the nilradical of p {\displaystyle {\mathfrak {p}}} .

These conditions are equivalent over an algebraically closed field of characteristic zero, such as the complex numbers. If the field F {\displaystyle \mathbb {F} } is not algebraically closed, then the first condition is replaced by the assumption that

  • p F F ¯ {\displaystyle {\mathfrak {p}}\otimes _{\mathbb {F} }{\overline {\mathbb {F} }}} contains a Borel subalgebra of g F F ¯ {\displaystyle {\mathfrak {g}}\otimes _{\mathbb {F} }{\overline {\mathbb {F} }}}

where F ¯ {\displaystyle {\overline {\mathbb {F} }}} is the algebraic closure of F {\displaystyle \mathbb {F} } .

Examples

For the general linear Lie algebra g = g l n ( F ) {\displaystyle {\mathfrak {g}}={\mathfrak {gl}}_{n}(\mathbb {F} )} , a parabolic subalgebra is the stabilizer of a partial flag of F n {\displaystyle \mathbb {F} ^{n}} , i.e. a sequence of nested linear subspaces. For a complete flag, the stabilizer gives a Borel subalgebra. For a single linear subspace F k F n {\displaystyle \mathbb {F} ^{k}\subset \mathbb {F} ^{n}} , one gets a maximal parabolic subalgebra p {\displaystyle {\mathfrak {p}}} , and the space of possible choices is the Grassmannian G r ( k , n ) {\displaystyle \mathrm {Gr} (k,n)} .

In general, for a complex simple Lie algebra g {\displaystyle {\mathfrak {g}}} , parabolic subalgebras are in bijection with subsets of simple roots, i.e. subsets of the nodes of the Dynkin diagram.

See also

Bibliography

  • Baston, Robert J.; Eastwood, Michael G. (2016) [1989], The Penrose Transform: its Interaction with Representation Theory, Dover, ISBN 9780486816623
  • Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103.
  • Grothendieck, Alexander (1957), "Sur la classification des fibrés holomorphes sur la sphère de Riemann", Amer. J. Math., 79 (1): 121–138, doi:10.2307/2372388, JSTOR 2372388.
  • Humphreys, J. (1972), Linear Algebraic Groups, Springer, ISBN 978-0-387-90108-4


  • v
  • t
  • e