Peroxisome proliferator-activated receptor gamma

Nuclear receptor protein found in humans
PPARG
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1FM6, 1FM9, 1I7I, 1K74, 1KNU, 1NYX, 1PRG, 1RDT, 1WM0, 1ZEO, 1ZGY, 2ATH, 2F4B, 2FVJ, 2G0G, 2G0H, 2GTK, 2HFP, 2HWQ, 2HWR, 2I4J, 2I4P, 2I4Z, 2OM9, 2P4Y, 2POB, 2PRG, 2Q59, 2Q5P, 2Q5S, 2Q61, 2Q6R, 2Q6S, 2Q8S, 2QMV, 2VSR, 2VST, 2VV0, 2VV1, 2VV2, 2VV3, 2VV4, 2XKW, 2YFE, 2ZK0, 2ZK1, 2ZK2, 2ZK3, 2ZK4, 2ZK5, 2ZK6, 2ZNO, 2ZVT, 3ADS, 3ADT, 3ADU, 3ADV, 3ADW, 3ADX, 3AN3, 3AN4, 3B0Q, 3B0R, 3B1M, 3B3K, 3BC5, 3CDP, 3CDS, 3CS8, 3CWD, 3D6D, 3DZU, 3DZY, 3E00, 3ET0, 3ET3, 3FEJ, 3FUR, 3G9E, 3GBK, 3H0A, 3HO0, 3HOD, 3IA6, 3K8S, 3KMG, 3LMP, 3NOA, 3OSI, 3OSW, 3PBA, 3PO9, 3PRG, 3QT0, 3R5N, 3R8A, 3R8I, 3S9S, 3SZ1, 3T03, 3TY0, 3U9Q, 3V9T, 3V9V, 3V9Y, 3VJH, 3VJI, 3VN2, 3VSO, 3VSP, 3WJ4, 3WJ5, 3WMH, 3X1H, 3X1I, 4A4V, 4A4W, 4CI5, 4E4K, 4E4Q, 4EM9, 4EMA, 4F9M, 4FGY, 4HEE, 4JAZ, 4JL4, 4L96, 4L98, 4O8F, 4OJ4, 4PRG, 4PVU, 4PWL, 4R2U, 4R6S, 4XLD, 4R06, 4Y29, 4XTA, 4XUM, 4YT1, 4XUH, 5F9B, 5AZV

Identifiers
AliasesPPARG, CIMT1, GLM1, NR1C3, PPARG1, PPARG2, PPARgamma, peroxisome proliferator activated receptor gamma, PPARG5
External IDsOMIM: 601487 MGI: 97747 HomoloGene: 7899 GeneCards: PPARG
Gene location (Human)
Chromosome 3 (human)
Chr.Chromosome 3 (human)[1]
Chromosome 3 (human)
Genomic location for PPARG
Genomic location for PPARG
Band3p25.2Start12,287,368 bp[1]
End12,434,356 bp[1]
Gene location (Mouse)
Chromosome 6 (mouse)
Chr.Chromosome 6 (mouse)[2]
Chromosome 6 (mouse)
Genomic location for PPARG
Genomic location for PPARG
Band6 E3|6 53.41 cMStart115,337,912 bp[2]
End115,467,360 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • subcutaneous adipose tissue

  • rectum

  • right lung

  • urinary bladder

  • Achilles tendon

  • jejunal mucosa

  • placenta

  • upper lobe of left lung

  • body of stomach

  • right lobe of thyroid gland
Top expressed in
  • brown adipose tissue

  • white adipose tissue

  • mucous cell of stomach

  • subcutaneous adipose tissue

  • epithelium of stomach

  • pyloric antrum

  • secondary oocyte

  • mammary gland

  • cumulus cell

  • intercostal muscle
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
  • protein binding
  • alpha-actinin binding
  • chromatin binding
  • prostaglandin receptor activity
  • core promoter sequence-specific DNA binding
  • enzyme binding
  • protein phosphatase binding
  • metal ion binding
  • arachidonic acid binding
  • nuclear receptor coactivator activity
  • steroid hormone receptor activity
  • sequence-specific DNA binding
  • identical protein binding
  • nuclear receptor activity
  • DNA-binding transcription factor activity
  • DNA binding
  • double-stranded DNA binding
  • protein C-terminus binding
  • zinc ion binding
  • peptide binding
  • protein self-association
  • retinoid X receptor binding
  • protein heterodimerization activity
  • DNA binding domain binding
  • LBD domain binding
  • DNA-binding transcription factor activity, RNA polymerase II-specific
  • transcription factor binding
  • estrogen receptor binding
  • E-box binding
  • transcription cis-regulatory region binding
  • RNA polymerase II transcription regulatory region sequence-specific DNA binding
  • DNA-binding transcription repressor activity, RNA polymerase II-specific
  • fatty acid binding
  • lipid binding
  • signaling receptor activity
Cellular component
  • cytosol
  • RNA polymerase II transcription regulator complex
  • perinuclear region of cytoplasm
  • cytoplasm
  • nucleus
  • intracellular membrane-bounded organelle
  • nucleoplasm
  • protein-containing complex
Biological process
  • negative regulation of cell population proliferation
  • epithelial cell differentiation
  • negative regulation of smooth muscle cell proliferation
  • positive regulation of oligodendrocyte differentiation
  • transcription, DNA-templated
  • activation of cysteine-type endopeptidase activity involved in apoptotic process
  • response to lipid
  • placenta development
  • cellular response to vitamin E
  • negative regulation of interferon-gamma-mediated signaling pathway
  • negative regulation of sequestering of triglyceride
  • regulation of fat cell differentiation
  • cellular response to retinoic acid
  • glucose homeostasis
  • negative regulation of collagen biosynthetic process
  • cellular response to hyperoxia
  • response to estrogen
  • regulation of cholesterol transporter activity
  • regulation of circadian rhythm
  • negative regulation of telomerase activity
  • signal transduction
  • cellular response to insulin stimulus
  • monocyte differentiation
  • regulation of transcription by RNA polymerase II
  • regulation of blood pressure
  • positive regulation of apoptotic process
  • positive regulation of fat cell differentiation
  • negative regulation of cholesterol storage
  • regulation of transcription, DNA-templated
  • negative regulation of cell growth
  • negative regulation of transcription, DNA-templated
  • cellular response to prostaglandin stimulus
  • animal organ regeneration
  • positive regulation of DNA-binding transcription factor activity
  • lipoprotein transport
  • response to metformin
  • heart development
  • response to cold
  • negative regulation of acute inflammatory response
  • fatty acid oxidation
  • lipid homeostasis
  • transcription initiation from RNA polymerase II promoter
  • response to vitamin A
  • innate immune response
  • response to retinoic acid
  • cell maturation
  • cell fate commitment
  • peroxisome proliferator activated receptor signaling pathway
  • rhythmic process
  • response to mechanical stimulus
  • long-chain fatty acid transport
  • lipid metabolism
  • response to caffeine
  • positive regulation of fatty acid oxidation
  • response to immobilization stress
  • positive regulation of phagocytosis, engulfment
  • negative regulation of pancreatic stellate cell proliferation
  • response to starvation
  • response to organic cyclic compound
  • regulation of lipid metabolic process
  • steroid hormone mediated signaling pathway
  • response to organic substance
  • response to nutrient
  • cellular response to prostaglandin E stimulus
  • negative regulation of transcription by RNA polymerase II
  • white fat cell differentiation
  • negative regulation of macrophage derived foam cell differentiation
  • positive regulation of transcription by RNA polymerase II
  • G protein-coupled receptor signaling pathway
  • macrophage derived foam cell differentiation
  • positive regulation of DNA binding
  • positive regulation of transcription, DNA-templated
  • negative regulation of angiogenesis
  • negative regulation of blood vessel endothelial cell migration
  • pri-miRNA transcription by RNA polymerase II
  • negative regulation of gene silencing by miRNA
  • cellular response to low-density lipoprotein particle stimulus
  • positive regulation of vascular associated smooth muscle cell apoptotic process
  • negative regulation of vascular endothelial cell proliferation
  • negative regulation of vascular associated smooth muscle cell proliferation
  • fatty acid metabolic process
  • multicellular organism development
  • hormone-mediated signaling pathway
  • cell differentiation
  • intracellular receptor signaling pathway
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

5468

19016

Ensembl

ENSG00000132170

ENSMUSG00000000440

UniProt

P37231

P37238

RefSeq (mRNA)
NM_005037
NM_015869
NM_138711
NM_138712
NM_001330615

NM_001354666
NM_001354667
NM_001354668
NM_001354669
NM_001354670
NM_001374261
NM_001374262
NM_001374263
NM_001374264
NM_001374265
NM_001374266

NM_001127330
NM_011146
NM_001308352
NM_001308354

RefSeq (protein)
NP_001317544
NP_005028
NP_056953
NP_619725
NP_619726

NP_001341595
NP_001341596
NP_001341597
NP_001341598
NP_001341599
NP_001361190
NP_001361191
NP_001361192
NP_001361193
NP_001361194
NP_001361195

NP_001120802
NP_001295281
NP_001295283
NP_035276

Location (UCSC)Chr 3: 12.29 – 12.43 MbChr 6: 115.34 – 115.47 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Peroxisome proliferator-activated receptor gamma (PPAR-γ or PPARG), also known as the glitazone reverse insulin resistance receptor, or NR1C3 (nuclear receptor subfamily 1, group C, member 3) is a type II nuclear receptor functioning as a transcription factor that in humans is encoded by the PPARG gene.[5][6][7]

Tissue distribution

PPARG is mainly present in adipose tissue, colon and macrophages. Two isoforms of PPARG are detected in the human and in the mouse: PPAR-γ1 (found in nearly all tissues except muscle) and PPAR-γ2 (mostly found in adipose tissue and the intestine).[8][9]

Gene expression

This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear receptors. PPARs form heterodimers with retinoid X receptors (RXRs) and these heterodimers regulate transcription of various genes. Three subtypes of PPARs are known: PPAR-alpha, PPAR-delta, and PPAR-gamma. The protein encoded by this gene is PPAR-gamma and is a regulator of adipocyte differentiation. Alternatively spliced transcript variants that encode different isoforms have been described.[10]

The activity of PPARG can be regulated via phosphorylation through the MEK/ERK pathway. This modification decreases transcriptional activity of PPARG and leads to diabetic gene modifications, and results in insulin insensitivity. For example, the phosphorylation of serine 112 will inhibit PPARG function, and enhance adipogenic potential of fibroblasts.[11]

Function

PPARG regulates fatty acid storage and glucose metabolism. The genes activated by PPARG stimulate lipid uptake and adipogenesis by fat cells. PPARG knockout mice are devoid of adipose tissue, establishing PPARG as a master regulator of adipocyte differentiation.[12]

PPARG increases insulin sensitivity by enhancing storage of fatty acids in fat cells (reducing lipotoxicity), by enhancing adiponectin release from fat cells, by inducing FGF21,[12] and by enhancing nicotinic acid adenine dinucleotide phosphate production through upregulation of the CD38 enzyme.[13]

PPARG promotes anti-inflammatory M2 macrophage activation in mice.[14]

Adiponectin induces ABCA1-mediated reverse cholesterol transport by activation of PPAR-γ and LXRα/β.[15]

Many naturally occurring agents directly bind with and activate PPAR gamma. These agents include various polyunsaturated fatty acids like arachidonic acid and arachidonic acid metabolites such as certain members of the 5-hydroxyicosatetraenoic acid and 5-oxo-eicosatetraenoic acid family, e.g., 5-oxo-15(S)-HETE and 5-oxo-ETE or 15-hydroxyicosatetraenoic acid family including 15(S)-HETE, 15(R)-HETE, and 15(S)-HpETE,[16][17][18] the phytocannabinoid tetrahydrocannabinol (THC),[19] its metabolite THC-COOH, and its synthetic analog ajulemic acid (AJA).[20] The activation of PPAR gamma by these and other ligands may be responsible for inhibiting the growth of cultured human breast, gastric, lung, prostate and other cancer cell lines.[21][22]

During embryogenesis, PPARG first substantially expresses in interscapular brown fat pad.[23] The depletion of PPARG will result in embryonic lethality at E10.5, due to the vascular anomalies in placenta, with no permeation of fetal blood vessels and dilation and rupture of maternal blood sinuses.[24] The expression PPARG can be detected in placenta as early as E8.5 and through the remainder of gestation, mainly located in the primary trophoblast cell in the human placenta.[23] PPARG is required for epithelial differentiation of trophoblast tissue, which is critical for proper placenta vascularization. PPARG agonists inhibit extravillous cytotrophoblast invasion. PPARG is also required for the accumulation of lipid droplets by the placenta.[11]

Interactions

Peroxisome proliferator-activated receptor gamma has been shown to interact with:

Research

PPAR-gamma agonists have been used in the treatment of hyperlipidaemia and hyperglycemia.[36][37]

Many insulin sensitizing drugs (namely, the thiazolidinediones) used in the treatment of diabetes activate PPARG as a means to lower serum glucose without increasing pancreatic insulin secretion. Activation of PPARG is more effective for skeletal muscle insulin resistance than for insulin resistance of the liver.[38]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000132170 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000000440 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Greene ME, Blumberg B, McBride OW, Yi HF, Kronquist K, Kwan K, et al. (1995). "Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping". Gene Expression. 4 (4–5): 281–99. PMC 6134382. PMID 7787419.
  6. ^ Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz MD, Moller DE, Berger J (July 1996). "Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2". Biochemical and Biophysical Research Communications. 224 (2): 431–7. doi:10.1006/bbrc.1996.1044. PMID 8702406.
  7. ^ Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, et al. (December 2006). "International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors". Pharmacological Reviews. 58 (4): 726–41. doi:10.1124/pr.58.4.5. PMID 17132851. S2CID 2240461.
  8. ^ Fajas L, Auboeuf D, Raspé E, Schoonjans K, Lefebvre AM, Saladin R, et al. (July 1997). "The organization, promoter analysis, and expression of the human PPARgamma gene". The Journal of Biological Chemistry. 272 (30): 18779–89. doi:10.1074/jbc.272.30.18779. PMID 9228052.
  9. ^ Park YK, Wang L, Giampietro A, Lai B, Lee JE, Ge K (January 2017). "Distinct Roles of Transcription Factors KLF4, Krox20, and Peroxisome Proliferator-Activated Receptor γ in Adipogenesis". Molecular and Cellular Biology. 37 (2): 18779–89. doi:10.1128/MCB.00554-16. PMC 5214852. PMID 27777310.
  10. ^ "Entrez Gene: PPARG peroxisome proliferator-activated receptor gamma".
  11. ^ a b Suwaki N, Masuyama H, Masumoto A, Takamoto N, Hiramatsu Y (April 2007). "Expression and potential role of peroxisome proliferator-activated receptor gamma in the placenta of diabetic pregnancy". Placenta. 28 (4): 315–23. doi:10.1016/j.placenta.2006.04.002. PMID 16753211.
  12. ^ a b Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM (May 2013). "PPARγ signaling and metabolism: the good, the bad and the future". Nature Medicine. 19 (5): 557–66. doi:10.1038/nm.3159. PMC 3870016. PMID 23652116.
  13. ^ Song EK, Lee YR, Kim YR, Yeom JH, Yoo CH, Kim HK, et al. (December 2012). "NAADP mediates insulin-stimulated glucose uptake and insulin sensitization by PPARγ in adipocytes". Cell Reports. 2 (6): 1607–19. doi:10.1016/j.celrep.2012.10.018. PMID 23177620.
  14. ^ a b Peluso I, Morabito G, Urban L, Ioannone F, Serafini M (December 2012). "Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst". Endocrine, Metabolic & Immune Disorders Drug Targets. 12 (4): 351–60. doi:10.2174/187153012803832602. PMID 23061409.
  15. ^ Hafiane A, Gasbarrino K, Daskalopoulou SS (November 2019). "The role of adiponectin in cholesterol efflux and HDL biogenesis and metabolism". Metabolism. 100: 153953. doi:10.1016/j.metabol.2019.153953. PMID 31377319. S2CID 203413137.
  16. ^ Dreyer C, Keller H, Mahfoudi A, Laudet V, Krey G, Wahli W (1993). "Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR)". Biology of the Cell. 77 (1): 67–76. doi:10.1016/s0248-4900(05)80176-5. PMID 8390886. S2CID 10746292.
  17. ^ O'Flaherty JT, Rogers LC, Paumi CM, Hantgan RR, Thomas LR, Clay CE, et al. (October 2005). "5-Oxo-ETE analogs and the proliferation of cancer cells". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1736 (3): 228–36. doi:10.1016/j.bbalip.2005.08.009. PMID 16154383.
  18. ^ Naruhn S, Meissner W, Adhikary T, Kaddatz K, Klein T, Watzer B, et al. (February 2010). "15-hydroxyeicosatetraenoic acid is a preferential peroxisome proliferator-activated receptor beta/delta agonist". Molecular Pharmacology. 77 (2): 171–84. doi:10.1124/mol.109.060541. PMID 19903832. S2CID 30996954.
  19. ^ O'Sullivan SE, Tarling EJ, Bennett AJ, Kendall DA, Randall MD (November 2005). "Novel time-dependent vascular actions of Delta9-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma". Biochemical and Biophysical Research Communications. 337 (3): 824–31. doi:10.1016/j.bbrc.2005.09.121. PMID 16213464.
  20. ^ Liu J, Li H, Burstein SH, Zurier RB, Chen JD (May 2003). "Activation and binding of peroxisome proliferator-activated receptor gamma by synthetic cannabinoid ajulemic acid". Molecular Pharmacology. 63 (5): 983–92. doi:10.1124/mol.63.5.983. PMID 12695526. S2CID 22671555.
  21. ^ Krishnan A, Nair SA, Pillai MR (September 2007). "Biology of PPAR gamma in cancer: a critical review on existing lacunae". Current Molecular Medicine. 7 (6): 532–40. doi:10.2174/156652407781695765. PMID 17896990.
  22. ^ Ezzeddini R, Taghikhani M, Salek Farrokhi A, Somi MH, Samadi N, Esfahani A, Rasaee, MJ (May 2021). "Downregulation of fatty acid oxidation by involvement of HIF-1α and PPARγ in human gastric adenocarcinoma and its related clinical significance". Journal of Physiology and Biochemistry. 77 (2): 249–260. doi:10.1007/s13105-021-00791-3. PMID 33730333. S2CID 232300877.
  23. ^ a b Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, et al. (October 1999). "PPAR gamma is required for placental, cardiac, and adipose tissue development". Molecular Cell. 4 (4): 585–95. doi:10.1016/s1097-2765(00)80209-9. PMID 10549290.
  24. ^ Schaiff WT, Barak Y, Sadovsky Y (April 2006). "The pleiotropic function of PPAR gamma in the placenta". Molecular and Cellular Endocrinology. 249 (1–2): 10–5. doi:10.1016/j.mce.2006.02.009. PMID 16574314. S2CID 54322301.
  25. ^ Brendel C, Gelman L, Auwerx J (June 2002). "Multiprotein bridging factor-1 (MBF-1) is a cofactor for nuclear receptors that regulate lipid metabolism". Molecular Endocrinology. 16 (6): 1367–77. doi:10.1210/mend.16.6.0843. PMID 12040021.
  26. ^ Berger J, Patel HV, Woods J, Hayes NS, Parent SA, Clemas J, et al. (April 2000). "A PPARgamma mutant serves as a dominant negative inhibitor of PPAR signaling and is localized in the nucleus". Molecular and Cellular Endocrinology. 162 (1–2): 57–67. doi:10.1016/S0303-7207(00)00211-2. PMID 10854698. S2CID 20343538.
  27. ^ Gampe RT, Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, et al. (March 2000). "Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors". Molecular Cell. 5 (3): 545–55. doi:10.1016/S1097-2765(00)80448-7. PMID 10882139.
  28. ^ a b c Fajas L, Egler V, Reiter R, Hansen J, Kristiansen K, Debril MB, et al. (December 2002). "The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation". Developmental Cell. 3 (6): 903–10. doi:10.1016/S1534-5807(02)00360-X. PMID 12479814.
  29. ^ a b c d Kodera Y, Takeyama K, Murayama A, Suzawa M, Masuhiro Y, Kato S (October 2000). "Ligand type-specific interactions of peroxisome proliferator-activated receptor gamma with transcriptional coactivators". The Journal of Biological Chemistry. 275 (43): 33201–4. doi:10.1074/jbc.C000517200. PMID 10944516.
  30. ^ Franco PJ, Li G, Wei LN (August 2003). "Interaction of nuclear receptor zinc finger DNA binding domains with histone deacetylase". Molecular and Cellular Endocrinology. 206 (1–2): 1–12. doi:10.1016/S0303-7207(03)00254-5. PMID 12943985. S2CID 19487189.
  31. ^ Heinlein CA, Ting HJ, Yeh S, Chang C (June 1999). "Identification of ARA70 as a ligand-enhanced coactivator for the peroxisome proliferator-activated receptor gamma". The Journal of Biological Chemistry. 274 (23): 16147–52. doi:10.1074/jbc.274.23.16147. PMID 10347167.
  32. ^ Nishizawa H, Yamagata K, Shimomura I, Takahashi M, Kuriyama H, Kishida K, et al. (January 2002). "Small heterodimer partner, an orphan nuclear receptor, augments peroxisome proliferator-activated receptor gamma transactivation". The Journal of Biological Chemistry. 277 (2): 1586–92. doi:10.1074/jbc.M104301200. PMID 11696534.
  33. ^ Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG (November 2003). "Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha". Molecular Cell. 12 (5): 1137–49. doi:10.1016/S1097-2765(03)00391-5. PMID 14636573.
  34. ^ Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM (November 1999). "Activation of PPARgamma coactivator-1 through transcription factor docking". Science. 286 (5443): 1368–71. doi:10.1126/science.286.5443.1368. PMID 10558993.
  35. ^ Mittal S, Inamdar S, Acharya J, Pekhale K, Kalamkar S, Boppana R, Ghaskadbi S (October 2020). "miR-3666 inhibits development of hepatic steatosis by negatively regulating PPARγ". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1865 (10): 158777. doi:10.1016/j.bbalip.2020.158777. PMID 32755726. S2CID 221017099.
  36. ^ Lehrke M, Lazar MA (December 2005). "The many faces of PPARgamma". review. Cell. 123 (6): 993–9. doi:10.1016/j.cell.2005.11.026. PMID 16360030. S2CID 18526710.
  37. ^ Kim JH, Song J, Park KW (March 2015). "The multifaceted factor peroxisome proliferator-activated receptor γ (PPARγ) in metabolism, immunity, and cancer". review. Archives of Pharmacal Research. 38 (3): 302–12. doi:10.1007/s12272-015-0559-x. PMID 25579849. S2CID 12296573.
  38. ^ Abdul-Ghani MA, Tripathy D, DeFronzo RA (May 2006). "Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose". review. Diabetes Care. 29 (5): 1130–9. doi:10.2337/dc05-2179. PMID 16644654.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

  • v
  • t
  • e
  • 1fm6: THE 2.1 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF THE HETERODIMER OF THE HUMAN RXRALPHA AND PPARGAMMA LIGAND BINDING DOMAINS RESPECTIVELY BOUND WITH 9-CIS RETINOIC ACID AND ROSIGLITAZONE AND CO-ACTIVATOR PEPTIDES.
    1fm6: THE 2.1 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF THE HETERODIMER OF THE HUMAN RXRALPHA AND PPARGAMMA LIGAND BINDING DOMAINS RESPECTIVELY BOUND WITH 9-CIS RETINOIC ACID AND ROSIGLITAZONE AND CO-ACTIVATOR PEPTIDES.
  • 1fm9: THE 2.1 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF THE HETERODIMER OF THE HUMAN RXRALPHA AND PPARGAMMA LIGAND BINDING DOMAINS RESPECTIVELY BOUND WITH 9-CIS RETINOIC ACID AND GI262570 AND CO-ACTIVATOR PEPTIDES.
    1fm9: THE 2.1 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF THE HETERODIMER OF THE HUMAN RXRALPHA AND PPARGAMMA LIGAND BINDING DOMAINS RESPECTIVELY BOUND WITH 9-CIS RETINOIC ACID AND GI262570 AND CO-ACTIVATOR PEPTIDES.
  • 1i7i: CRYSTAL STRUCTURE OF THE LIGAND BINDING DOMAIN OF HUMAN PPAR-GAMMA IN COMPLEX WITH THE AGONIST AZ 242
    1i7i: CRYSTAL STRUCTURE OF THE LIGAND BINDING DOMAIN OF HUMAN PPAR-GAMMA IN COMPLEX WITH THE AGONIST AZ 242
  • 1k74: The 2.3 Angstrom resolution crystal structure of the heterodimer of the human PPARgamma and RXRalpha ligand binding domains respectively bound with GW409544 and 9-cis retinoic acid and co-activator peptides.
    1k74: The 2.3 Angstrom resolution crystal structure of the heterodimer of the human PPARgamma and RXRalpha ligand binding domains respectively bound with GW409544 and 9-cis retinoic acid and co-activator peptides.
  • 1knu: LIGAND BINDING DOMAIN OF THE HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA IN COMPLEX WITH A SYNTHETIC AGONIST
    1knu: LIGAND BINDING DOMAIN OF THE HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA IN COMPLEX WITH A SYNTHETIC AGONIST
  • 1nyx: Ligand binding domain of the human peroxisome proliferator activated receptor gamma in complex with an agonist
    1nyx: Ligand binding domain of the human peroxisome proliferator activated receptor gamma in complex with an agonist
  • 1prg: LIGAND BINDING DOMAIN OF THE HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA
    1prg: LIGAND BINDING DOMAIN OF THE HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA
  • 1rdt: Crystal Structure of a new rexinoid bound to the RXRalpha ligand binding doamin in the RXRalpha/PPARgamma heterodimer
    1rdt: Crystal Structure of a new rexinoid bound to the RXRalpha ligand binding doamin in the RXRalpha/PPARgamma heterodimer
  • 1wm0: PPARgamma in complex with a 2-BABA compound
    1wm0: PPARgamma in complex with a 2-BABA compound
  • 1zeo: Crystal Structure of Human PPAR-gamma Ligand Binding Domain Complexed with an Alpha-Aryloxyphenylacetic Acid Agonist
    1zeo: Crystal Structure of Human PPAR-gamma Ligand Binding Domain Complexed with an Alpha-Aryloxyphenylacetic Acid Agonist
  • 1zgy: Structural and Biochemical Basis for Selective Repression of the Orphan Nuclear Receptor LRH-1 by SHP
    1zgy: Structural and Biochemical Basis for Selective Repression of the Orphan Nuclear Receptor LRH-1 by SHP
  • 2ath: Crystal structure of the ligand binding domain of human PPAR-gamma im complex with an agonist
    2ath: Crystal structure of the ligand binding domain of human PPAR-gamma im complex with an agonist
  • 2f4b: Crystal structure of the ligand binding domain of human PPAR-gamma in complex with an agonist
    2f4b: Crystal structure of the ligand binding domain of human PPAR-gamma in complex with an agonist
  • 2fvj: A novel anti-adipogenic partial agonist of peroxisome proliferator-activated receptor-gamma (PPARG) recruits pparg-coactivator-1 alpha (PGC1A) but potentiates insulin signaling in vitro
    2fvj: A novel anti-adipogenic partial agonist of peroxisome proliferator-activated receptor-gamma (PPARG) recruits pparg-coactivator-1 alpha (PGC1A) but potentiates insulin signaling in vitro
  • 2g0g: Structure-based drug design of a novel family of PPAR partial agonists: virtual screening, x-ray crystallography and in vitro/in vivo biological activities
    2g0g: Structure-based drug design of a novel family of PPAR partial agonists: virtual screening, x-ray crystallography and in vitro/in vivo biological activities
  • 2g0h: Structure-based drug design of a novel family of PPAR partial agonists: virtual screening, x-ray crystallography and in vitro/in vivo biological activities
    2g0h: Structure-based drug design of a novel family of PPAR partial agonists: virtual screening, x-ray crystallography and in vitro/in vivo biological activities
  • 2gtk: Structure-based Design of Indole Propionic Acids as Novel PPARag CO-Agonists
    2gtk: Structure-based Design of Indole Propionic Acids as Novel PPARag CO-Agonists
  • 2hfp: Crystal Structure of PPAR Gamma with N-sulfonyl-2-indole carboxamide ligands
    2hfp: Crystal Structure of PPAR Gamma with N-sulfonyl-2-indole carboxamide ligands
  • 2i4j: Crystal structure of the complex between PPARgamma and the agonist LT160 (ureidofibrate derivative)
    2i4j: Crystal structure of the complex between PPARgamma and the agonist LT160 (ureidofibrate derivative)
  • 2i4p: Crystal structure of the complex between PPARgamma and the partial agonist LT127 (ureidofibrate derivative). Structure obtained from crystals of the apo-form soaked for 30 days.
    2i4p: Crystal structure of the complex between PPARgamma and the partial agonist LT127 (ureidofibrate derivative). Structure obtained from crystals of the apo-form soaked for 30 days.
  • 2i4z: Crystal structure of the complex between PPARgamma and the partial agonist LT127 (ureidofibrate derivative). This structure has been obtained from crystals soaked for 6 hours.
    2i4z: Crystal structure of the complex between PPARgamma and the partial agonist LT127 (ureidofibrate derivative). This structure has been obtained from crystals soaked for 6 hours.
  • 2om9: Ajulemic acid, a synthetic cannabinoid bound to PPAR gamma
    2om9: Ajulemic acid, a synthetic cannabinoid bound to PPAR gamma
  • 2prg: LIGAND-BINDING DOMAIN OF THE HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA
    2prg: LIGAND-BINDING DOMAIN OF THE HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA
  • 3prg: LIGAND BINDING DOMAIN OF HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR
    3prg: LIGAND BINDING DOMAIN OF HUMAN PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR
  • 4prg: 0072 PARTIAL AGONIST PPAR GAMMA COCRYSTAL
    4prg: 0072 PARTIAL AGONIST PPAR GAMMA COCRYSTAL
  • v
  • t
  • e
(1) Basic domains
(1.1) Basic leucine zipper (bZIP)
(1.2) Basic helix-loop-helix (bHLH)
Group A
Group B
Group C
bHLH-PAS
Group D
Group E
Group F
bHLH-COE
(1.3) bHLH-ZIP
(1.4) NF-1
(1.5) RF-X
(1.6) Basic helix-span-helix (bHSH)
(2) Zinc finger DNA-binding domains
(2.1) Nuclear receptor (Cys4)
subfamily 1
subfamily 2
subfamily 3
subfamily 4
subfamily 5
subfamily 6
subfamily 0
(2.2) Other Cys4
(2.3) Cys2His2
(2.4) Cys6
(2.5) Alternating composition
(2.6) WRKY
(3) Helix-turn-helix domains
(3.1) Homeodomain
Antennapedia
ANTP class
protoHOX
Hox-like
metaHOX
NK-like
other
(3.2) Paired box
(3.3) Fork head / winged helix
(3.4) Heat shock factors
(3.5) Tryptophan clusters
(3.6) TEA domain
  • transcriptional enhancer factor
(4) β-Scaffold factors with minor groove contacts
(4.1) Rel homology region
(4.2) STAT
(4.3) p53-like
(4.4) MADS box
(4.6) TATA-binding proteins
(4.7) High-mobility group
(4.9) Grainyhead
(4.10) Cold-shock domain
(4.11) Runt
(0) Other transcription factors
(0.2) HMGI(Y)
(0.3) Pocket domain
(0.5) AP-2/EREBP-related factors
(0.6) Miscellaneous
see also transcription factor/coregulator deficiencies
  • v
  • t
  • e
PPARTooltip Peroxisome proliferator-activated receptor modulators
PPARαTooltip Peroxisome proliferator-activated receptor alpha
PPARδTooltip Peroxisome proliferator-activated receptor delta
  • Antagonists: FH-535
  • GSK-0660
  • GSK-3787
PPARγTooltip Peroxisome proliferator-activated receptor gamma
  • SPPARMsTooltip Selective PPARγ modulator: BADGE
  • EPI-001
  • INT-131
  • MK-0533
  • S26948
  • Antagonists: FH-535
  • GW-9662
  • SR-202
  • T-0070907
  • Unknown: SR-1664
Non-selective
See also
Receptor/signaling modulators