Plutonium hexafluoride

Plutonium hexafluoride[1]
Stereo structural formula of plutonium hexafluoride
Names
IUPAC name
plutonium(VI) fluoride
Identifiers
CAS Number
  • 13693-06-6 checkY
3D model (JSmol)
  • Interactive image
ChemSpider
  • 452599 checkY
PubChem CID
  • 518809
CompTox Dashboard (EPA)
  • DTXSID70160009 Edit this at Wikidata
InChI
  • InChI=1S/6FH.Pu/h6*1H;/q;;;;;;+6/p-6 ☒N
    Key: OJSBUHMRXCPOJV-UHFFFAOYSA-H checkY
  • F[Pu](F)(F)(F)(F)F
Properties
Chemical formula
PuF
6
Appearance Dark red, opaque crystals
Density 5.08 g·cm−3
Melting point 52 °C (126 °F; 325 K)
Boiling point 62 °C (144 °F; 335 K)
Structure
Crystal structure
Orthorhombic, oP28
Space group
Pnma, No. 62
Coordination geometry
octahedral (Oh)
Dipole moment
0 D
Related compounds
Related fluoroplutoniums
Plutonium trifluoride

Plutonium tetrafluoride

Hazards
GHS labelling:
GHS03: OxidizingGHS05: CorrosiveGHS06: ToxicGHS09: Environmental hazard
Danger
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 4: Readily capable of detonation or explosive decomposition at normal temperatures and pressures. E.g. nitroglycerinSpecial hazard RA: Radioactive. E.g. plutonium
4
0
4
Special hazard RA: Radioactive. E.g. plutonium
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references
Chemical compound

Plutonium hexafluoride is the highest fluoride of plutonium, and is of interest for laser enrichment of plutonium, in particular for the production of pure plutonium-239 from irradiated uranium. This isotope of plutonium is needed to avoid premature ignition of low-mass nuclear weapon designs by neutrons produced by spontaneous fission of plutonium-240.

Preparation

Plutonium hexafluoride is prepared by fluorination of plutonium tetrafluoride (PuF4) by powerful fluorinating agents such as elemental fluorine.[2][3][4][5]

PuF
4
+ F
2
PuF
6

This reaction is endothermic. The product forms relatively quickly at temperatures of 750 °C, and high yields may be obtained by quickly condensing the product and removing it from equilibrium.[5]

It can also be obtained by fluorination of plutonium(III) fluoride, plutonium(IV) oxide, or plutonium(IV) oxalate at approximately 700 °C:[4][6]

PuF
3
 + 3 F
2
 → 2 PuF
6
PuO
2
 + 3 F
2
 → PuF
6
 + O
2
Pu(C2O4)2 + 3 F
2
 → PuF
6
 + 4 CO
2

Alternatively, plutonium(IV) fluoride oxidizes in an 800-°C oxygen atmosphere to plutonium hexafluoride and plutonium(IV) oxide:[7]

PuF
4
 + O
2
 → 2 PuF
6
 + PuO
2

In 1984, the synthesis of plutonium hexafluoride at near–room-temperatures was achieved through the use of dioxygen difluoride.[8][9] Hydrogen fluoride is not sufficient[10]: 42  even though it is a powerful fluorinating agent. Room temperature syntheses are also possible by using krypton difluoride[11] or irradiation with UV light.[12]

Properties

Physical properties

Phase diagram

Plutonium hexafluoride is a red-brown volatile solid,[1][4] crystallizing in the orthorhombic crystal system with space group Pnma and lattice parameters a = 995 pm, b = 902 pm, and c = 526 pm.[13] It sublimes around 60 °C with heat 12.1 kcal/mol to a gas of octahedral molecules[2] with plutonium-fluorine bond lengths of 197.1 pm.[14] At high pressure, the gas condenses, with a triple point at 51.58 °C and 710 hPa (530 Torr); the heat of vaporization is 7.4 kcal/mol.[13] At temperatures below -180 °C, plutonium hexafluoride is colorless.[4]

Plutonium hexafluoride is paramagnetic, with molar magnetic susceptibility 0.173 mm3/mol.[15]

Spectroscopic properties

Plutonium hexafluoride admits six different oscillation modes: stretching modes v1, v2, and v3 and rotational modes v4, v5, and v6.[16][17] The PuF
6
Raman spectrum cannot be observed, because irradiation at 564.1 nm induces photochemical decomposition.[18] Irradation at 532 nm induces fluorescence at 1900 nm and 4800 nm; irradiation at 1064 nm induces fluorescence about 2300 nm.[19][20]

Absorption modes for PuF
6
[21]
Oscillation ν1 ν2 ν3 ν4 ν5 ν6
Symbol A1g Eg F1u F1u F2g F2u
Wavelength (cm−1) 628 523 615 203 211 171
IR active? + +
Raman active? + + +

Chemical properties

Plutonium hexafluoride is relatively hard to handle, being very corrosive, poisonous, and prone to auto-radiolysis.[22][23][24]

Reactions with other compounds

PuF6 is stable in dry air, but reacts vigorously with water, including atmospheric moisture, to form plutonium(VI) oxyfluoride and hydrofluoric acid.[3][25]

PuF
6
+ 2 H
2
O
PuO
2
F
2
+ 4 HF

It can be stored for a long time in a quartz or pyrex ampoule, provided there are no traces of moisture, the glass has been thoroughly outgassed, and any traces of hydrogen fluoride have been removed from the compound.[26]

An important reaction involving PuF6 is the reduction to plutonium dioxide. Carbon monoxide generated from an oxygen-methane flame can perform the reduction.[27]

Decomposition reactions

Plutonium hexafluoride typically decomposes to plutonium tetrafluoride and fluorine gas. Thermal decomposition does not occur at room temperature,[28][29] but proceeds very quickly at 280 °C.[5][26] In the absence of any external cause for decomposition, the alpha-particle current from plutonium decay will generate auto-radiolysis, at a rate of 1.5%/day (half-time 1.5 months) in solid phase.[5][23][30] Storage in gas phase at pressures 50–100 torr (70–130 mbar) appears to minimize auto-radiolysis, and long-term recombination with freed fluorine does occur.[31][unreliable source?]

Likewise, the compound is photosensitive, decomposing (possibly to plutonium pentafluoride and fluorine) under laser irradiation at a wavelength of less than 520 nm.[32]

Exposure to laser radiation at 564.1 nm or gamma rays will also induce rapid dissolution.[18][24]

Uses

Plutonium hexafluoride plays a role in the enrichment of plutonium, in particular for the isolation of the fissile isotope 239Pu from irradiated uranium. For use in nuclear weaponry, the 241Pu present must be removed for two reasons:

  • It generates enough neutrons by spontaneous fission to cause an uncontrollable reaction.
  • It undergoes beta decay to form 241Am, leading to the accumulation of americium over long periods of storage which must be removed.

The separation between plutonium and the americium contained proceeds through reaction with dioxygen difluoride. Aged PuF4 is fluorinated at room temperature to gaseous PuF6, which is separated and reduced back to PuF4, whereas any AmF4 present does not undergo the same conversion. The product thus contains very little amounts of americium, which becomes concentrated in the unreacted solid.[33]

Separation of the hexafluorides of uranium and plutonium is also important in the reprocessing of nuclear waste.[34][35][36] From a molten salt mixture containing both elements, uranium can largely be removed by fluorination to UF6, which is stable at higher temperatures, with only small amounts of plutonium escaping as PuF6.[10]

History

Shortly after plutonium's discovery and isolation in 1940, chemists began to postulate the existence of plutonium hexafluoride. Early experiments, which sought to mimic methods for the construction of uranium hexafluoride, had conflicting results; and definitive proof only appeared in 1942.[37] The Second World War then interrupted the publication of further research.[22]

Initial experiments, undertaken with extremely small quantities of plutonium, showed that a volatile plutonium compound would developed in a stream of fluorine gas only at temperatures exceeding 700 °C. Subsequent experiments showed that plutonium on a copper plate volatilized in a 500-°C fluorine stream, and that the reaction rate decreased with atomic number in the series uranium > neptunium > plutonium.[38] Brown and Hill, using milligram-scale samples of plutonium, completed in 1942 a distillation experiment with uranium hexafluoride, suggesting that higher fluorides of plutonium ought be unstable, and decompose to plutonium tetrafluoride at room temperature. Nevertheless, the vapor pressure of the compound appeared to correspond to that of uranium hexafluoride.[39] Davidson, Katz, and Orlemann showed in 1943 that plutonium in a nickel vessel volatilized under a fluorine atmosphere, and that the reaction product precipitated on a platinum surface.[40]

Fisher, Vaslow, and Tevebaugh conjectured that the higher fluorides exhibited a positive enthalpy of formation, that their formation would be endothermic, and consequently only stabilized at high temperatures.[41]

In 1944, Alan E. Florin [de] prepared a volatile compound of plutonium believed to be the elusive plutonium hexafluoride, but the product decomposed prior to identification. The fluid substance would collect onto cooled glass and liquify, but then the fluoride atoms would react with the glass.[42]

By comparison between uranium and plutonium compounds, Brewer, Bromley, Gilles, and Lofgren computed the thermodynamic characteristics of plutonium hexafluoride.[43]

In 1950, Florin's efforts finally yielded the synthesis,[3][44] and improved thermodynamic data and a new apparatus for its production soon followed.[2] Around the same time, British workers also developed a method for the production of PuF6.[4][7]

References

  1. ^ a b Lide, David R. (2009). Handbook of Chemistry and Physics (90 ed.). Boca Raton, Florida: CRC Press. pp. 4–81. ISBN 978-1-4200-9084-0. (webelements.com)
  2. ^ a b c Florin, Alan E.; Tannenbaum, Irving R.; Lemons, Joe F. (1956). "Preparation and properties of plutonium hexafluoride and identification of plutonium(VI) oxyfluoride". Journal of Inorganic and Nuclear Chemistry. 2 (5–6): 368–379. doi:10.1016/0022-1902(56)80091-2. Originally published as
    • Florin, Alan E. (15 May 1953). Thermodynamic Properties of Plutonium Hexafluoride: a Preliminary Report (PDF) (Technical report). Los Alamos Scientific Laboratory. LAMS-1587.
    • Tannenbaum, I. R.; Florin, Alan E. (15 May 1953). An Improved Apparatus for the Production of Plutonium Hexafluoride (PDF) (Technical report). Los Alamos Scientific Laboratory. LA-1580.
  3. ^ a b c Florin, Alan E. (9 November 1950). Plutonium Hexafluoride: Second Report on the Preparation and Properties (PDF) (Technical report). Los Alamos Scientific Laboratory. LAMS-1168.
  4. ^ a b c d e Mandleberg, C.J.; Rae, H.K.; Hurst, R.; Long, G.; Davies, D.; Francis, K.E. (1956). "Plutonium hexafluoride". Journal of Inorganic and Nuclear Chemistry. 2 (5–6): 358–367. doi:10.1016/0022-1902(56)80090-0. Originally published as
    • Mandleberg, C. J.; Rae, H. K.; Hurst, R.; Long, G.; Davis, D.; Francis, K. E. (April 1953). Plutonium Hexafluoride: Preparation and Some Physical Properties (Technical report). Vol. I. Atomic Energy Research Establishment. C/R-1172.
    • Hurst, R.; Mandleberg, C. J.; Rae, H. K.; Davis, D.; Francis, K. E. (January 1953). Plutonium Hexafluoride: Preparation and Some Physical Properties (Technical report). Vol. II. Atomic Energy Research Establishment. C/R-1312.
  5. ^ a b c d Weinstock, Bernard; Malm, John G. (July 1956). "The properties of plutonium hexafluoride". Journal of Inorganic and Nuclear Chemistry. 2 (5–6): 380–394. doi:10.1016/0022-1902(56)80092-4.
  6. ^ Dawson, J. K.; Truswell, A. E. (22 February 1951). The Preparation of Plutonium Trifluoride and Tetrafluoride by the Use of Hydrogen Fluoride (Technical report). Atomic Energy Research Establishment. C/R-662.
  7. ^ a b Mandleberg, C. J.; et al. (1952). (Technical report). Atomic Energy Research Establishment. C/R-157. {{cite tech report}}: Missing or empty |title= (help)
  8. ^ Malm, J. G.; Eller, P. G.; Asprey, L. B. (1984). "Low temperature synthesis of plutonium hexafluoride using dioxygen difluoride". Journal of the American Chemical Society. 106 (9): 2726–2727. doi:10.1021/ja00321a056.
  9. ^ Erilov, P. E.; Titov, V. V.; Serik, V. F.; Sokolov, V. B. (2002). "Low-Temperature Synthesis of Plutonium Hexafluoride". Atomic Energy. 92 (1): 57–63. doi:10.1023/A:1015106730457. S2CID 96612181.
  10. ^ a b Evaluation of the U.S. Department of Energy's Alternatives for the Removal and Disposition of Molten Salt Reactor Experiment Fluoride Salts. Washington, DC: National Academies Press. 1997. doi:10.17226/5538. ISBN 978-0-309-05684-7 – via NAP.edu.
  11. ^ Asprey, L. B.; Eller, P. G.; Kinkead, Scott A. (1986). "Formation of actinide hexafluorides at ambient temperatures with krypton difluoride". Inorganic Chemistry. 25 (5): 670–672. doi:10.1021/ic00225a016. ISSN 0020-1669.
  12. ^ Trevorrow, L.E.; Gerding, T.J.; Steindler, M.J. (1969). "Ultraviolet-activated synthesis of plutonium hexafluoride at room temperature". Inorganic and Nuclear Chemistry Letters. 5 (10): 837–839. doi:10.1016/0020-1650(69)80068-1.
  13. ^ a b Gmelins Handbuch der anorganischen Chemie [Gmelin's Handbook of Inorganic Chemistry]. 71 (Transurane [Transuranics]) (in German). Vol. C. pp. 108–114.
  14. ^ Kimura, Masao; Schomaker, Verner; Smith, Darwin W.; Weinstock, Bernard (May 1968). "Electron-Diffraction Investigation of the Hexafluorides of Tungsten, Osmium, Iridium, Uranium, Neptunium, and Plutonium". The Journal of Chemical Physics. 48 (9): 4001–4012. Bibcode:1968JChPh..48.4001K. doi:10.1063/1.1669727. ISSN 0021-9606.
  15. ^ Gruen, D. M.; Malm, J. G.; Weinstock, B. (April 1956). "Magnetic Susceptibility of Plutonium Hexafluoride". The Journal of Chemical Physics. 24 (4): 905–906. Bibcode:1956JChPh..24..905G. doi:10.1063/1.1742635. ISSN 0021-9606.
  16. ^ Steindler, Martin J.; Gunther, William H. (August 1964). "The absorption spectrum of plutonium hexafluoride". Spectrochimica Acta. 20 (8): 1319–1322. Bibcode:1964AcSpe..20.1319S. doi:10.1016/0371-1951(64)80159-4.
  17. ^ Walters, R.T.; Briesmeister, R.A. (January 1984). "Absorption spectrum of plutonium hexafluoride in the 3000–9000 Å spectral region". Spectrochimica Acta Part A: Molecular Spectroscopy. 40 (7): 587–589. Bibcode:1984AcSpA..40..587W. doi:10.1016/0584-8539(84)80108-7.
  18. ^ a b Hawkins, N. J.; Mattraw, H. C.; Sabol, W. W. (24 May 1954). Infrared Spectrum and Thermodynamic Properties of PuF6 (Technical report). Knolls Atomic Power Laboratory. KAPL-1007.
  19. ^ Beitz, James V.; Williams, Clayton W.; Carnall, W. T. (March 1982). "Fluorescence studies of neptunium and plutonium hexafluoride vapors". The Journal of Chemical Physics. 76 (5): 2756–2757. Bibcode:1982JChPh..76.2756B. doi:10.1063/1.443223. ISSN 0021-9606.
  20. ^ Beitz, James V.; Williams, Clayton W.; Carnall, W. T. (19 May 1983). "11. Plutonium Hexafluoride Gas Photophysics and Photochemistry". In Carnall, William T.; Choppin, Gregory R. (eds.). Plutonium Chemistry. ACS Symposium Series. Vol. 216. Washington, D.C.: American Chemical Society. pp. 155–172. doi:10.1021/bk-1983-0216.ch011. ISBN 978-0-8412-0772-1.
  21. ^
    • Weinstock, B.; Weaver, E.E.; Malm, J.G. (September 1959). "Vapour-pressures of NpF6 and PuF6; thermodynamic calculations with UF6, NpF6 and PuF6". Journal of Inorganic and Nuclear Chemistry. 11 (2): 104–114. doi:10.1016/0022-1902(59)80054-3.
    • Kim, K.C.; Mulford, R.N. (June 1990). "Vibrational properties of actinide (U, Np, Pu, Am) hexafluoride molecules". Journal of Molecular Structure: THEOCHEM. 207 (3–4): 293–299. doi:10.1016/0166-1280(90)85031-H.
    • Hawkins, N. J.; Mattraw, H. C.; Sabol, W. W. (November 1955). "Infrared Spectrum of Plutonium Hexafluoride". The Journal of Chemical Physics. 23 (11): 2191–2192. Bibcode:1955JChPh..23.2191H. doi:10.1063/1.1740699. ISSN 0021-9606.
    • Malm, John G.; Weinstock, Bernard; Claassen, Howard H. (November 1955). "Infrared Spectra of NpF 6 and PuF 6". The Journal of Chemical Physics. 23 (11): 2192–2193. Bibcode:1955JChPh..23.2192M. doi:10.1063/1.1740700. ISSN 0021-9606.
  22. ^ a b Steindler, Martin J. (1 August 1963). Laboratory Investigations in Support of Fluid-bed Fluoride Volatility Processes (Technical report). Vol. II: The Properties of Plutonium Hexafluoride. Argonne National Laboratory. doi:10.2172/4170539. ANL-6753.
  23. ^ a b Bibler, Ned E. (23 August 1979). "α and β Radiolysis of Plutonium Hexafluoride Vapor". J. Phys. Chem. 83 (17): 2179–2186. doi:10.1021/j100480a001.
  24. ^ a b Steindler, M.J.; Steidl, D.V.; Fischer, J. (November 1964). "The decomposition of plutonium hexafluoride by gamma radiation". Journal of Inorganic and Nuclear Chemistry. 26 (11): 1869–1878. doi:10.1016/0022-1902(64)80011-7.
  25. ^ Kessie, R. W. (1967). "Plutonium and Uranium Hexafluoride Hydrolysis Kinetics". Industrial & Engineering Chemistry Process Design and Development. 6 (1): 105–111. doi:10.1021/i260021a018. ISSN 0196-4305.
  26. ^ a b Malm, John G.; Weinstock, Bernard; Weaver, E. Eugene (1958). "The Preparation and Properties of NpF5; a Comparison with PuF5". The Journal of Physical Chemistry. 62 (12): 1506–1508. doi:10.1021/j150570a009. ISSN 0022-3654.
  27. ^ Pokidyshev, A. M.; Tsarenko, I. A.; Serik, V. F.; Sokolov, V. B. (October 2003). "Reduction of Plutonium Hexafluoride Using Gaseous Reagents". Atomic Energy. 95 (4): 701–708. doi:10.1023/B:ATEN.0000010988.94533.24. ISSN 1063-4258. S2CID 93145477.
  28. ^ Trevorrow, L. E.; Shinn, W. A.; Steunenberg, R. K. (March 1961). "The Thermal Decomposition of Plutonium Hexafluoride". The Journal of Physical Chemistry. 65 (3): 398–403. doi:10.1021/j100821a003. ISSN 0022-3654.
  29. ^ Fischer, J.; Trevorrow, L.; Shinn, W. (October 1961). "The Kinetics and Mechanism of the Thermal Decomposition of Plutonium Hexafluoride". The Journal of Physical Chemistry. 65 (10): 1843–1846. doi:10.1021/j100827a036. ISSN 0022-3654.
  30. ^
    • Steindler 1963
    • Wagner, R. P.; Shinn, W. A.; Fischer, J.; Steindler, Martin J. (1 May 1963). Laboratory Investigations in Support of Fluid-bed Fluoride Volatility Processes (Technical report). Vol. VII: The Decomposition of Gaseous Plutonium Hexafluoride by Alpha Radiation. Argonne National Laboratory. doi:10.2172/4628896. ANL-7013.
  31. ^ Morse, L. R. (2005), "PuF6 gas pressure in aged cylinders" (personal communiction to D. L. Clark), Los Alamos, NM.
  32. ^ US 4670239, Sherman W. Rabideau & George M. Campbell, "Photochemical Preparation of Plutonium Pentafluoride", published June 2, 1987, assigned to The United States of America,  but see also Lobikov, E. A.; Prusakov, V. N.; Serik, V. F. (August–September 1992). "Plutonium Hexafluoride Decomposition under the Action of Laser Radiation". Journal of Fluorine Chemistry. 58 (2–3): 277. doi:10.1016/S0022-1139(00)80734-4, in which the decay product is identified as tetrafluoride instead.
  33. ^ Mills, T.R.; Reese, L.W. (1994). "Separation of plutonium and americium by low-temperature fluorination". Journal of Alloys and Compounds. 213–214: 360–362. doi:10.1016/0925-8388(94)90931-8.
  34. ^
    • US 3708568A, Gilliher, W.; Harris, R. & Ledoux, R., "Removal of Plutonium from Plutonium Hexafluoride-Uranium Hexafluoride Mixtures", published 1973-01-02, assigned to Atomic Energy Commission 
    • US 4172114A, Mitsuhiro Nishimura et al, "Method for purifying plutonium hexafluoride", published 1979-10-23, assigned to Japan Atomic Energy Research Institute 
  35. ^ Moser, W.Scott; Navratil, James D. (1984). "Review of major plutonium pyrochemical technology". Journal of the Less Common Metals. 100: 171–187. doi:10.1016/0022-5088(84)90062-6. OSTI 6168468.
  36. ^ Drobyshevskii, Yu. V.; Ezhov, V. K.; Lobikov, E. A.; Prusakov, V. N.; Serik, V. F.; Sokolov, V. B. (2002). "Application of Physical Methods for Reducing Plutonium Hexafluoride". Atomic Energy. 93 (1): 578–588. doi:10.1023/A:1020840716387. S2CID 100100314.
  37. ^ Seaborg, G. T. (1942). (Technical report). University of Chicago Metallurgical Laboratory. CN-125. {{cite tech report}}: Missing or empty |title= (help)
  38. ^ Brown, H. S.; Hill, O. F.; Jaffay, A. H. (1942). (Technical report). University of Chicago Metallurgical Laboratory. CN-343. {{cite tech report}}: Missing or empty |title= (help)
  39. ^ Brown, H. S.; Hill, O. F. (12 November 1942). (Technical report). University of Chicago Metallurgical Laboratory. CN-363. {{cite tech report}}: Missing or empty |title= (help)
  40. ^ Davidson, N. R.; Katz, J. J.; Orlemann, O. F. (11 October 1943). (Technical report). University of Chicago Metallurgical Laboratory. CN-987. {{cite tech report}}: Missing or empty |title= (help)
  41. ^ Fisher, R. W.; Vaslow, F.; Tevebaugh, A. D. (10 August 1944). (Technical report). Iowa State College. CN-1783. {{cite tech report}}: Missing or empty |title= (help)
  42. ^ Florin, Alan E. (1 October 1944). (Technical report). University of Chicago Metallurgical Laboratory. CN-2159. {{cite tech report}}: Missing or empty |title= (help)
  43. ^
  44. ^ Florin, Alan E. (16 October 1950). Plutonium Hexafluoride, Plutonium (VI) Oxyfluoride: Preparation, Identification, and Some Properties (PDF) (Technical report). Los Alamos Scientific Laboratory. LAMS-1118.
  • v
  • t
  • e
Known binary hexafluorides
Chalcogen binary hexafluorides
  • SF6
  • SeF6
  • TeF6
  • PoF6
Noble gas binary hexafluorides
  • XeF6
Transition metal binary hexafluorides
  • MoF6
  • TcF6
  • RuF6
  • RhF6
  • WF6
  • ReF6
  • OsF6
  • IrF6
  • PtF6
Actinide binary hexafluorides
  • UF6
  • NpF6
  • PuF6
Predicted binary hexafluorides
Noble gas binary hexafluorides
  • KrF6
  • RnF
    6
Transition metal binary hexafluorides
  • CrF6
  • PdF6
  • AuF6
Actinide binary hexafluorides
  • AmF6
  • CmF6
  • EsF6
  • v
  • t
  • e
Plutonium(II)
Plutonium(III)
  • PuAs
  • PuH3
  • PuP
  • PuB
  • PuF3
  • PuCl3
  • PuBr3
  • PuI3
  • PuN
Plutonium(IV)
  • PuC
  • Pu(NO3)4
  • PuF4
  • PuO2
  • Pu(IO3)4
  • Pu(C8H8)2
Plutonium(V)
  • PuF5
  • XePuF6
Plutonium(VI)
  • PuF6
Plutonium(VIII)
  • PuO4
  • v
  • t
  • e
HF He
LiF BeF2 BF
BF3
B2F4
CF4
CxFy
NF3
N2F4
OF
OF2
O2F2
O2F
F Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF4
S2F10
SF6
ClF
ClF3
ClF5
HArF
ArF2
KF CaF2 ScF3 TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
CrF6
MnF2
MnF3
MnF4
FeF2
FeF3
CoF2
CoF3
NiF2
NiF3
CuF
CuF2
ZnF2 GaF3 GeF4 AsF3
AsF5
SeF4
SeF6
BrF
BrF3
BrF5
KrF2
KrF4
KrF6
RbF SrF2 YF3 ZrF4 NbF4
NbF5
MoF4
MoF5
MoF6
TcF6 RuF3
RuF4
RuF5
RuF6
RhF3
RhF5
RhF6
PdF2
Pd[PdF6]
PdF4
PdF6
AgF
AgF2
AgF3
Ag2F
CdF2 InF3 SnF2
SnF4
SbF3
SbF5
TeF4
TeF6
IF
IF3
IF5
IF7
XeF2
XeF4
XeF6
XeF8
CsF BaF2 * LuF3 HfF4 TaF5 WF4
WF6
ReF6
ReF7
OsF4
OsF5
OsF6
OsF
7

OsF8
IrF3
IrF5
IrF6
PtF2
Pt[PtF6]
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
AuF5·F2
HgF2
Hg2F2
HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
PoF4
PoF6
At RnF2
RnF6
Fr RaF2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
* LaF3 CeF3
CeF4
PrF3
PrF4
NdF3 PmF3 SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF3 HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
** AcF3 ThF4 PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF3
AmF4
AmF6
CmF3 Bk Cf Es Fm Md No
PF6, AsF6, SbF6 compounds
  • AgPF6
  • KAsF6
  • LiAsF6
  • NaAsF6
  • HPF6
  • HSbF6
  • NH4PF6
  • KPF6
  • KSbF6
  • LiPF6
  • NaPF6
  • NaSbF6
  • TlPF6
AlF6 compounds
  • Cs2AlF5
  • K3AlF6
  • Na3AlF6
chlorides, bromides, iodides
and pseudohalogenides
SiF62-, GeF62- compounds
  • BaSiF6
  • BaGeF6
  • (NH4)2SiF6
  • Na2[SiF6]
  • K2[SiF6]
Oxyfluorides
  • BrOF3
  • BrO2F
  • BrO3F
  • LaOF
  • ThOF2
  • VOF
    3
  • TcO
    3
    F
  • WOF
    4
  • YOF
  • ClOF3
  • ClO2F3
Organofluorides
  • CBrF3
  • CBr2F2
  • CBr3F
  • CClF3
  • CCl2F2
  • CCl3F
  • CF2O
  • CF3I
  • CHF3
  • CH2F2
  • CH3F
  • C2Cl3F3
  • C2H3F
  • C6H5F
  • C7H5F3
  • C15F33N
  • C3H5F
  • C6H11F
with transition metal,
lanthanide, actinide, ammonium
  • VOF3
  • CrOF4
  • CrF2O2
  • NH4F
  • (NH4)2ZrF6
  • CsXeF7
  • Li2TiF6
  • Li2ZrF6
  • K2TiF6
  • Rb2TiF6
  • Na2TiF6
  • Na2ZrF6
  • K2NbF7
  • K2TaF7
  • K2ZrF6
  • UO2F2
nitric acids
bifluorides
  • KHF2
  • NaHF2
  • NH4HF2
thionyl, phosphoryl,
and iodosyl
  • F2OS
  • F3OP
  • PSF3
  • IOF3
  • IO3F
  • IOF5
  • IO2F
  • IO2F3
  • v
  • t
  • e
Ac Th Pa U Np Pu Am Cm Bk Cf Es
+6 UF6
UCl6
NpF6 PuF6 AmF6 EsF6
+5 PaF5
PaCl5
PaBr5
PaI5
UF5
UCl5
UBr5
NpF5 PuF5
+4 ThF4
ThCl4
ThBr4
PaF4
PaCl4
PaBr4
PaI4
UF4
UCl4
UBr4
UI4
NpF4
NpCl4
NpBr4
PuF4 AmF4 CmF4 BkF4 CfF4 EsF4
+3 AcF3
AcCl3
AcBr3
AcI3
ThCl3
ThF3
ThI3
UF3
UCl3
UBr3
UI3
NpF3
NpCl3
NpBr3
NpI3
PuF3
PuCl3
PuBr3
PuI3
AmF3
AmCl3
AmBr3
AmI3
CmF3
CmCl3
CmBr3
CmI3
BkF3
BkCl3
BkBr3
BkI3
CfF3
CfCl3
CfBr3
CfI3
EsF3
EsCl3
EsBr3
EsI3
+2 ThI2 AmF2
AmCl2
AmBr2
AmI2
CfI2 EsCl2
EsBr2
EsI2