Poincaré residue

In mathematics, the Poincaré residue is a generalization, to several complex variables and complex manifold theory, of the residue at a pole of complex function theory. It is just one of a number of such possible extensions.

Given a hypersurface X P n {\displaystyle X\subset \mathbb {P} ^{n}} defined by a degree d {\displaystyle d} polynomial F {\displaystyle F} and a rational n {\displaystyle n} -form ω {\displaystyle \omega } on P n {\displaystyle \mathbb {P} ^{n}} with a pole of order k > 0 {\displaystyle k>0} on X {\displaystyle X} , then we can construct a cohomology class Res ( ω ) H n 1 ( X ; C ) {\displaystyle \operatorname {Res} (\omega )\in H^{n-1}(X;\mathbb {C} )} . If n = 1 {\displaystyle n=1} we recover the classical residue construction.

Historical construction

When Poincaré first introduced residues[1] he was studying period integrals of the form

Γ ω {\displaystyle {\underset {\Gamma }{\iint }}\omega } for Γ H 2 ( P 2 D ) {\displaystyle \Gamma \in H_{2}(\mathbb {P} ^{2}-D)}

where ω {\displaystyle \omega } was a rational differential form with poles along a divisor D {\displaystyle D} . He was able to make the reduction of this integral to an integral of the form

γ Res ( ω ) {\displaystyle \int _{\gamma }{\text{Res}}(\omega )} for γ H 1 ( D ) {\displaystyle \gamma \in H_{1}(D)}

where Γ = T ( γ ) {\displaystyle \Gamma =T(\gamma )} , sending γ {\displaystyle \gamma } to the boundary of a solid ε {\displaystyle \varepsilon } -tube around γ {\displaystyle \gamma } on the smooth locus D {\displaystyle D^{*}} of the divisor. If

ω = q ( x , y ) d x d y p ( x , y ) {\displaystyle \omega ={\frac {q(x,y)dx\wedge dy}{p(x,y)}}}

on an affine chart where p ( x , y ) {\displaystyle p(x,y)} is irreducible of degree N {\displaystyle N} and deg q ( x , y ) N 3 {\displaystyle \deg q(x,y)\leq N-3} (so there is no poles on the line at infinity[2] page 150). Then, he gave a formula for computing this residue as

Res ( ω ) = q d x p / y = q d y p / x {\displaystyle {\text{Res}}(\omega )=-{\frac {qdx}{\partial p/\partial y}}={\frac {qdy}{\partial p/\partial x}}}

which are both cohomologous forms.

Construction

Preliminary definition

Given the setup in the introduction, let A k p ( X ) {\displaystyle A_{k}^{p}(X)} be the space of meromorphic p {\displaystyle p} -forms on P n {\displaystyle \mathbb {P} ^{n}} which have poles of order up to k {\displaystyle k} . Notice that the standard differential d {\displaystyle d} sends

d : A k 1 p 1 ( X ) A k p ( X ) {\displaystyle d:A_{k-1}^{p-1}(X)\to A_{k}^{p}(X)}

Define

K k ( X ) = A k p ( X ) d A k 1 p 1 ( X ) {\displaystyle {\mathcal {K}}_{k}(X)={\frac {A_{k}^{p}(X)}{dA_{k-1}^{p-1}(X)}}}

as the rational de-Rham cohomology groups. They form a filtration

K 1 ( X ) K 2 ( X ) K n ( X ) = H n + 1 ( P n + 1 X ) {\displaystyle {\mathcal {K}}_{1}(X)\subset {\mathcal {K}}_{2}(X)\subset \cdots \subset {\mathcal {K}}_{n}(X)=H^{n+1}(\mathbb {P} ^{n+1}-X)}

corresponding to the Hodge filtration.

Definition of residue

Consider an ( n 1 ) {\displaystyle (n-1)} -cycle γ H n 1 ( X ; C ) {\displaystyle \gamma \in H_{n-1}(X;\mathbb {C} )} . We take a tube T ( γ ) {\displaystyle T(\gamma )} around γ {\displaystyle \gamma } (which is locally isomorphic to γ × S 1 {\displaystyle \gamma \times S^{1}} ) that lies within the complement of X {\displaystyle X} . Since this is an n {\displaystyle n} -cycle, we can integrate a rational n {\displaystyle n} -form ω {\displaystyle \omega } and get a number. If we write this as

T ( ) ω : H n 1 ( X ; C ) C {\displaystyle \int _{T(-)}\omega :H_{n-1}(X;\mathbb {C} )\to \mathbb {C} }

then we get a linear transformation on the homology classes. Homology/cohomology duality implies that this is a cohomology class

Res ( ω ) H n 1 ( X ; C ) {\displaystyle \operatorname {Res} (\omega )\in H^{n-1}(X;\mathbb {C} )}

which we call the residue. Notice if we restrict to the case n = 1 {\displaystyle n=1} , this is just the standard residue from complex analysis (although we extend our meromorphic 1 {\displaystyle 1} -form to all of P 1 {\displaystyle \mathbb {P} ^{1}} . This definition can be summarized as the map

Res : H n ( P n X ) H n 1 ( X ) {\displaystyle {\text{Res}}:H^{n}(\mathbb {P} ^{n}\setminus X)\to H^{n-1}(X)}

Algorithm for computing this class

There is a simple recursive method for computing the residues which reduces to the classical case of n = 1 {\displaystyle n=1} . Recall that the residue of a 1 {\displaystyle 1} -form

Res ( d z z + a ) = 1 {\displaystyle \operatorname {Res} \left({\frac {dz}{z}}+a\right)=1}

If we consider a chart containing X {\displaystyle X} where it is the vanishing locus of w {\displaystyle w} , we can write a meromorphic n {\displaystyle n} -form with pole on X {\displaystyle X} as

d w w k ρ {\displaystyle {\frac {dw}{w^{k}}}\wedge \rho }

Then we can write it out as

1 ( k 1 ) ( d ρ w k 1 + d ( ρ w k 1 ) ) {\displaystyle {\frac {1}{(k-1)}}\left({\frac {d\rho }{w^{k-1}}}+d\left({\frac {\rho }{w^{k-1}}}\right)\right)}

This shows that the two cohomology classes

[ d w w k ρ ] = [ d ρ ( k 1 ) w k 1 ] {\displaystyle \left[{\frac {dw}{w^{k}}}\wedge \rho \right]=\left[{\frac {d\rho }{(k-1)w^{k-1}}}\right]}

are equal. We have thus reduced the order of the pole hence we can use recursion to get a pole of order 1 {\displaystyle 1} and define the residue of ω {\displaystyle \omega } as

Res ( α d w w + β ) = α | X {\displaystyle \operatorname {Res} \left(\alpha \wedge {\frac {dw}{w}}+\beta \right)=\alpha |_{X}}

Example

For example, consider the curve X P 2 {\displaystyle X\subset \mathbb {P} ^{2}} defined by the polynomial

F t ( x , y , z ) = t ( x 3 + y 3 + z 3 ) 3 x y z {\displaystyle F_{t}(x,y,z)=t(x^{3}+y^{3}+z^{3})-3xyz}

Then, we can apply the previous algorithm to compute the residue of

ω = Ω F t = x d y d z y d x d z + z d x d y t ( x 3 + y 3 + z 3 ) 3 x y z {\displaystyle \omega ={\frac {\Omega }{F_{t}}}={\frac {x\,dy\wedge dz-y\,dx\wedge dz+z\,dx\wedge dy}{t(x^{3}+y^{3}+z^{3})-3xyz}}}

Since

z d y ( F t x d x + F t y d y + F t z d z ) = z F t x d x d y z F t z d y d z y d z ( F t x d x + F t y d y + F t z d z ) = y F t x d x d z y F t y d y d z {\displaystyle {\begin{aligned}-z\,dy\wedge \left({\frac {\partial F_{t}}{\partial x}}\,dx+{\frac {\partial F_{t}}{\partial y}}\,dy+{\frac {\partial F_{t}}{\partial z}}\,dz\right)&=z{\frac {\partial F_{t}}{\partial x}}\,dx\wedge dy-z{\frac {\partial F_{t}}{\partial z}}\,dy\wedge dz\\y\,dz\wedge \left({\frac {\partial F_{t}}{\partial x}}\,dx+{\frac {\partial F_{t}}{\partial y}}\,dy+{\frac {\partial F_{t}}{\partial z}}\,dz\right)&=-y{\frac {\partial F_{t}}{\partial x}}\,dx\wedge dz-y{\frac {\partial F_{t}}{\partial y}}\,dy\wedge dz\end{aligned}}}

and

3 F t z F t x y F t y = x F t x {\displaystyle 3F_{t}-z{\frac {\partial F_{t}}{\partial x}}-y{\frac {\partial F_{t}}{\partial y}}=x{\frac {\partial F_{t}}{\partial x}}}

we have that

ω = y d z z d y F t / x d F t F t + 3 d y d z F t / x {\displaystyle \omega ={\frac {y\,dz-z\,dy}{\partial F_{t}/\partial x}}\wedge {\frac {dF_{t}}{F_{t}}}+{\frac {3\,dy\wedge dz}{\partial F_{t}/\partial x}}}

This implies that

Res ( ω ) = y d z z d y F t / x {\displaystyle \operatorname {Res} (\omega )={\frac {y\,dz-z\,dy}{\partial F_{t}/\partial x}}}

See also

References

  1. ^ Poincaré, H. (1887). "Sur les résidus des intégrales doubles". Acta Mathematica (in French). 9: 321–380. doi:10.1007/BF02406742. ISSN 0001-5962.
  2. ^ Griffiths, Phillip A. (1982). "Poincaré and algebraic geometry". Bulletin of the American Mathematical Society. 6 (2): 147–159. doi:10.1090/S0273-0979-1982-14967-9. ISSN 0273-0979.

Introductory

  • Poincaré and algebraic geometry
  • Infinitesimal variations of Hodge structure and the global Torelli problem - Page 7 contains general computation formula using Cech cohomology
  • Introduction to residues and resultants (PDF)
  • Higher Dimensional Residues - Mathoverflow

Advanced

  • Nicolaescu, Liviu, Residues and Hodge Theory (PDF)
  • Schnell, Christian, On Computing Picard-Fuchs Equations (PDF)

References

  • Boris A. Khesin, Robert Wendt, The Geometry of Infinite-dimensional Groups (2008) p. 171
  • Weber, Andrzej, Leray Residue for Singular Varieties (PDF)