Prime reciprocal magic square

Type of magic square

A prime reciprocal magic square is a magic square using the decimal digits of the reciprocal of a prime number.

Formulation

Basics

In decimal, unit fractions 1 2 {\displaystyle {\tfrac {1}{2}}} and 1 5 {\displaystyle {\tfrac {1}{5}}} have no repeating decimal, while 1 3 {\displaystyle {\tfrac {1}{3}}} repeats 0.3333 {\displaystyle 0.3333\dots } indefinitely. The remainder of 1 7 {\displaystyle {\tfrac {1}{7}}} , on the other hand, repeats over six digits as,

0. 1 42857 1 42857 1 {\displaystyle 0.{\mathbf {1}}42857{\mathbf {1}}42857{\mathbf {1}}\dots }

Consequently, multiples of one-seventh exhibit cyclic permutations of these six digits:[1]

1 / 7 = 0.142857 2 / 7 = 0.285714 3 / 7 = 0.428571 4 / 7 = 0.571428 5 / 7 = 0.714285 6 / 7 = 0.857142 {\displaystyle {\begin{aligned}1/7&=0.142857\dots \\2/7&=0.285714\dots \\3/7&=0.428571\dots \\4/7&=0.571428\dots \\5/7&=0.714285\dots \\6/7&=0.857142\dots \end{aligned}}}

If the digits are laid out as a square, each row and column sums to 1 + 4 + 2 + 8 + 5 + 7 = 27. {\displaystyle 1+4+2+8+5+7=27.} This yields the smallest base-10 non-normal, prime reciprocal magic square

1 {\displaystyle 1} 4 {\displaystyle 4} 2 {\displaystyle 2} 8 {\displaystyle 8} 5 {\displaystyle 5} 7 {\displaystyle 7}
2 {\displaystyle 2} 8 {\displaystyle 8} 5 {\displaystyle 5} 7 {\displaystyle 7} 1 {\displaystyle 1} 4 {\displaystyle 4}
4 {\displaystyle 4} 2 {\displaystyle 2} 8 {\displaystyle 8} 5 {\displaystyle 5} 7 {\displaystyle 7} 1 {\displaystyle 1}
5 {\displaystyle 5} 7 {\displaystyle 7} 1 {\displaystyle 1} 4 {\displaystyle 4} 2 {\displaystyle 2} 8 {\displaystyle 8}
7 {\displaystyle 7} 1 {\displaystyle 1} 4 {\displaystyle 4} 2 {\displaystyle 2} 8 {\displaystyle 8} 5 {\displaystyle 5}
8 {\displaystyle 8} 5 {\displaystyle 5} 7 {\displaystyle 7} 1 {\displaystyle 1} 4 {\displaystyle 4} 2 {\displaystyle 2}

In contrast with its rows and columns, the diagonals of this square do not sum to 27; however, their mean is 27, as one diagonal adds to 23 while the other adds to 31.

All prime reciprocals in any base with a p 1 {\displaystyle p-1} period will generate magic squares where all rows and columns produce a magic constant, and only a select few will be full, such that their diagonals, rows and columns collectively yield equal sums.

Decimal expansions

In a full, or otherwise prime reciprocal magic square with p 1 {\displaystyle p-1} period, the even number of k {\displaystyle k} −th rows in the square are arranged by multiples of 1 / p {\displaystyle 1/p} — not necessarily successively — where a magic constant can be obtained.

For instance, an even repeating cycle from an odd, prime reciprocal of p {\displaystyle p} that is divided into n {\displaystyle n} −digit strings creates pairs of complementary sequences of digits that yield strings of nines (9) when added together:

1 / 7 =   0.142 857 +   0.857 142 = 6 / 7   0.999 999 1 / 13 =   0.076 923 076 923 +   0.923 076 923 076 = 12 / 13   0.999 999 999 999 1 / 19 =   0.052631578 947368421 +   0.947368421 052631578 = 18 / 19   0.999999999 999999999 {\displaystyle {\begin{aligned}1/7=&{\text{ }}0.142\;857\dots \\+&{\text{ }}0.857\;142\ldots =6/7\\&------------\\&{\text{ }}0.999\;999\ldots \\\\1/13=&{\text{ }}0.076\;923\;076\;923\dots \\+&{\text{ }}0.923\;076\;923\;076\ldots =12/13\\&------------\\&{\text{ }}0.999\;999\;999\;999\ldots \\\\1/19=&{\text{ }}0.052631578\;947368421\dots \\+&{\text{ }}0.947368421\;052631578\ldots =18/19\\&------------\\&{\text{ }}0.999999999\;999999999\dots \\\end{aligned}}}

This is a result of Midy's theorem.[2][3] These complementary sequences are generated between multiples of prime reciprocals that add to 1.

More specifically, a factor n {\displaystyle n} in the numerator of the reciprocal of a prime number p {\displaystyle p} will shift the decimal places of its decimal expansion accordingly,

1 / 23 = 0.04347826 08695652 173913 2 / 23 = 0.08695652 17391304 347826 4 / 23 = 0.17391304 34782608 695652 8 / 23 = 0.34782608 69565217 391304 16 / 23 = 0.69565217 39130434 782608 {\displaystyle {\begin{aligned}1/23&=0.04347826\;08695652\;173913\ldots \\2/23&=0.08695652\;17391304\;347826\ldots \\4/23&=0.17391304\;34782608\;695652\ldots \\8/23&=0.34782608\;69565217\;391304\ldots \\16/23&=0.69565217\;39130434\;782608\ldots \\\end{aligned}}}

In this case, a factor of 2 moves the repeating decimal of 1 23 {\displaystyle {\tfrac {1}{23}}} by eight places.

A uniform solution of a prime reciprocal magic square, whether full or not, will hold rows with successive multiples of 1 / p {\displaystyle 1/p} . Other magic squares can be constructed whose rows do not represent consecutive multiples of 1 / p {\displaystyle 1/p} , which nonetheless generate a magic sum.

Magic constant

Magic squares based on reciprocals of primes p {\displaystyle p} in bases b {\displaystyle b} with periods p 1 {\displaystyle p-1} have magic sums equal to,[citation needed]

M = ( b 1 ) × p 1 2 . {\displaystyle M=(b-1)\times {\frac {p-1}{2}}.}

The table below lists some prime numbers that generate prime-reciprocal magic squares in given bases.[citation needed]

Prime Base Magic sum
19 10 81
53 12 286
59 2 29
67 2 33
83 2 41
89 19 792
211 2 105
223 3 222
307 5 612
383 10 1,719
397 5 792
487 6 1,215
593 3 592
631 87 27,090
787 13 4,716
811 3 810
1,033 11 5,160
1,307 5 2,612
1,499 11 7,490
1,877 19 16,884
2,011 26 25,125
2,027 2 1,013

Full magic squares

The 1 19 {\displaystyle {\mathbf {\tfrac {1}{19}}}} magic square with maximum period 18 contains a row-and-column total of 81, that is also obtained by both diagonals. This makes it the first full, non-normal base-10 prime reciprocal magic square whose multiples fit inside respective k {\displaystyle k} −th rows:[4][5]

1 / 19 = 0. 0   5   2   6   3   1   5   7   8   9   4   7   3   6   8   4   2   1 2 / 19 = 0.1   0   5   2   6   3   1   5   7   8   9   4   7   3   6   8   4   2 3 / 19 = 0.1   5   7   8   9   4   7   3   6   8   4   2   1   0   5   2   6   3 4 / 19 = 0.2   1   0   5   2   6   3   1   5   7   8   9   4   7   3   6   8   4 5 / 19 = 0.2   6   3   1   5   7   8   9   4   7   3   6   8   4   2   1   0   5 6 / 19 = 0.3   1   5   7   8   9   4   7   3   6   8   4   2   1   0   5   2   6 7 / 19 = 0.3   6   8   4   2   1   0   5   2   6   3   1   5   7   8   9   4   7 8 / 19 = 0.4   2   1   0   5   2   6   3   1   5   7   8   9   4   7   3   6   8 9 / 19 = 0.4   7   3   6   8   4   2   1   0   5   2   6   3   1   5   7   8   9 10 / 19 = 0.5   2   6   3   1   5   7   8   9   4   7   3   6   8   4   2   1   0 11 / 19 = 0.5   7   8   9   4   7   3   6   8   4   2   1   0   5   2   6   3   1 12 / 19 = 0.6   3   1   5   7   8   9   4   7   3   6   8   4   2   1   0   5   2 13 / 19 = 0.6   8   4   2   1   0   5   2   6   3   1   5   7   8   9   4   7   3 14 / 19 = 0.7   3   6   8   4   2   1   0   5   2   6   3   1   5   7   8   9   4 15 / 19 = 0.7   8   9   4   7   3   6   8   4   2   1   0   5   2   6   3   1   5 16 / 19 = 0.8   4   2   1   0   5   2   6   3   1   5   7   8   9   4   7   3   6 17 / 19 = 0.8   9   4   7   3   6   8   4   2   1   0   5   2   6   3   1   5   7 18 / 19 = 0. 9   4   7   3   6   8   4   2   1   0   5   2   6   3   1   5   7   8 {\displaystyle {\begin{aligned}1/19&=0.{\color {red}0}{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}{\color {red}1}\dots \\2/19&=0.1{\text{ }}{\color {red}0}{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}{\color {red}4}{\text{ }}2\dots \\3/19&=0.1{\text{ }}5{\text{ }}{\color {red}7}{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}{\color {red}2}{\text{ }}6{\text{ }}3\dots \\4/19&=0.2{\text{ }}1{\text{ }}0{\text{ }}{\color {red}5}{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}{\color {red}3}{\text{ }}6{\text{ }}8{\text{ }}4\dots \\5/19&=0.2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}{\color {red}5}{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}{\color {red}4}{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5\dots \\6/19&=0.3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}{\color {red}9}{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}{\color {red}2}{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6\dots \\7/19&=0.3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}{\color {red}0}{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}{\color {red}1}{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7\dots \\8/19&=0.4{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}{\color {red}3}{\text{ }}1{\text{ }}5{\text{ }}{\color {red}7}{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8\dots \\9/19&=0.4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}{\color {red}0}{\text{ }}{\color {red}5}{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}9\dots \\10/19&=0.5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}{\color {red}9}{\text{ }}{\color {red}4}{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}0\dots \\11/19&=0.5{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}{\color {red}6}{\text{ }}8{\text{ }}4{\text{ }}{\color {red}2}{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1\dots \\12/19&=0.6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}{\color {red}9}{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}{\color {red}8}{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2\dots \\13/19&=0.6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}{\color {red}0}{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}{\color {red}7}{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}7{\text{ }}3\dots \\14/19&=0.7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}{\color {red}4}{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}{\color {red}5}{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4\dots \\15/19&=0.7{\text{ }}8{\text{ }}9{\text{ }}{\color {red}4}{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}{\color {red}6}{\text{ }}3{\text{ }}1{\text{ }}5\dots \\16/19&=0.8{\text{ }}4{\text{ }}{\color {red}2}{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}8{\text{ }}9{\text{ }}4{\text{ }}{\color {red}7}{\text{ }}3{\text{ }}6\dots \\17/19&=0.8{\text{ }}{\color {red}9}{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}{\color {red}5}{\text{ }}7\dots \\18/19&=0.{\color {red}9}{\text{ }}4{\text{ }}7{\text{ }}3{\text{ }}6{\text{ }}8{\text{ }}4{\text{ }}2{\text{ }}1{\text{ }}0{\text{ }}5{\text{ }}2{\text{ }}6{\text{ }}3{\text{ }}1{\text{ }}5{\text{ }}7{\text{ }}{\color {red}8}\dots \\\end{aligned}}}

The first few prime numbers in decimal whose reciprocals can be used to produce a non-normal, full prime reciprocal magic square of this type are[6]

{19, 383, 32327, 34061, 45341, 61967, 65699, 117541, 158771, 405817, ...} (sequence A072359 in the OEIS).

The smallest prime number to yield such magic square in binary is 59 (1110112), while in ternary it is 223 (220213); these are listed at A096339, and A096660.

Variations

A 1 17 {\displaystyle {\tfrac {1}{17}}} prime reciprocal magic square with maximum period of 16 and magic constant of 72 can be constructed where its rows represent non-consecutive multiples of one-seventeenth:[7][8]

1 / 17 = 0. 0   5 8 8 2 3 5 2 9 4 1 1 7 6 4 7 5 / 17 = 0.2 9 4 1 1 7 6 4 7 0 5 8 8 2 3 5 8 / 17 = 0.4 7 0 5 8 8 2 3 5 2 9 4 1 1 7 6 6 / 17 = 0.3 5 2 9 4 1 1 7 6 4 7 0 5 8 8 2 13 / 17 = 0.7 6 4 7 0 5 8 8 2 3 5 2 9 4 1 1 14 / 17 = 0.8 2 3 5 2 9 4 1 1 7 6 4 7 0 5 8 2 / 17 = 0.1 1 7 6 4 7 0 5 8 8 2 3 5 2 9 4 10 / 17 = 0.5 8 8 2 3 5 2 9 4 1 1 7 6 4 7 0 16 / 17 = 0.9 4 1 1 7 6 4 7 0 5 8 8 2 3 5 2 12 / 17 = 0.7 0 5 8 8 2 3 5 2 9 4 1 1 7 6 4 9 / 17 = 0.5 2 9 4 1 1 7 6 4 7 0 5 8 8 2 3 11 / 17 = 0.6 4 7 0 5 8 8 2 3 5 2 9 4 1 1 7 4 / 17 = 0.2 3 5 2 9 4 1 1 7 6 4 7 0 5 8 8 3 / 17 = 0.1 7 6 4 7 0 5 8 8 2 3 5 2 9 4 1 15 / 17 = 0.8 8 2 3 5 2 9 4 1 1 7 6 4 7 0 5 7 / 17 = 0. 4 1 1 7 6 4 7 0 5 8 8 2 3 5 2 9 {\displaystyle {\begin{aligned}1/17&=0.{\color {blue}0}{\text{ }}5\;8\;8\;2\;3\;5\;2\;9\;4\;1\;1\;7\;6\;4\;{\color {blue}7}\dots \\5/17&=0.2\;{\color {blue}9}\;4\;1\;1\;7\;6\;4\;7\;0\;5\;8\;8\;2\;{\color {blue}3}\;5\dots \\8/17&=0.4\;7\;{\color {blue}0}\;5\;8\;8\;2\;3\;5\;2\;9\;4\;1\;{\color {blue}1}\;7\;6\dots \\6/17&=0.3\;5\;2\;{\color {blue}9}\;4\;1\;1\;7\;6\;4\;7\;0\;{\color {blue}5}\;8\;8\;2\dots \\13/17&=0.7\;6\;4\;7\;{\color {blue}0}\;5\;8\;8\;2\;3\;5\;{\color {blue}2}\;9\;4\;1\;1\dots \\14/17&=0.8\;2\;3\;5\;2\;{\color {blue}9}\;4\;1\;1\;7\;{\color {blue}6}\;4\;7\;0\;5\;8\dots \\2/17&=0.1\;1\;7\;6\;4\;7\;{\color {blue}0}\;5\;8\;{\color {blue}8}\;2\;3\;5\;2\;9\;4\dots \\10/17&=0.5\;8\;8\;2\;3\;5\;2\;{\color {blue}9}\;{\color {blue}4}\;1\;1\;7\;6\;4\;7\;0\dots \\16/17&=0.9\;4\;1\;1\;7\;6\;4\;{\color {blue}7}\;{\color {blue}0}\;5\;8\;8\;2\;3\;5\;2\dots \\12/17&=0.7\;0\;5\;8\;8\;2\;{\color {blue}3}\;5\;2\;{\color {blue}9}\;4\;1\;1\;7\;6\;4\dots \\9/17&=0.5\;2\;9\;4\;1\;{\color {blue}1}\;7\;6\;4\;7\;{\color {blue}0}\;5\;8\;8\;2\;3\dots \\11/17&=0.6\;4\;7\;0\;{\color {blue}5}\;8\;8\;2\;3\;5\;2\;{\color {blue}9}\;4\;1\;1\;7\dots \\4/17&=0.2\;3\;5\;{\color {blue}2}\;9\;4\;1\;1\;7\;6\;4\;7\;{\color {blue}0}\;5\;8\;8\dots \\3/17&=0.1\;7\;{\color {blue}6}\;4\;7\;0\;5\;8\;8\;2\;3\;5\;2\;{\color {blue}9}\;4\;1\dots \\15/17&=0.8\;{\color {blue}8}\;2\;3\;5\;2\;9\;4\;1\;1\;7\;6\;4\;7\;{\color {blue}0}\;5\dots \\7/17&=0.{\color {blue}4}\;1\;1\;7\;6\;4\;7\;0\;5\;8\;8\;2\;3\;5\;2\;{\color {blue}9}\dots \\\end{aligned}}}

As such, this full magic square is the first of its kind in decimal that does not admit a uniform solution where consecutive multiples of 1 / p {\displaystyle 1/p} fit in respective k {\displaystyle k} −th rows.

See also

References

  1. ^ Wells, D. (1987). The Penguin Dictionary of Curious and Interesting Numbers. London: Penguin Books. pp. 171–174. ISBN 0-14-008029-5. OCLC 39262447. S2CID 118329153.
  2. ^ Rademacher, Hans; Toeplitz, Otto (1957). The Enjoyment of Mathematics: Selections from Mathematics for the Amateur (2nd ed.). Princeton, NJ: Princeton University Press. pp. 158–160. ISBN 9780486262420. MR 0081844. OCLC 20827693. Zbl 0078.00114.
  3. ^ Leavitt, William G. (1967). "A Theorem on Repeating Decimals". The American Mathematical Monthly. 74 (6). Washington, D.C.: Mathematical Association of America: 669–673. doi:10.2307/2314251. JSTOR 2314251. MR 0211949. Zbl 0153.06503.
  4. ^ Andrews, William Symes (1917). Magic Squares and Cubes (PDF). Chicago, IL: Open Court Publishing Company. pp. 176, 177. ISBN 9780486206585. MR 0114763. OCLC 1136401. Zbl 1003.05500.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A021023 (Decimal expansion of 1/19.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-11-21.
  6. ^ Singleton, Colin R.J., ed. (1999). "Solutions to Problems and Conjectures". Journal of Recreational Mathematics. 30 (2). Amityville, NY: Baywood Publishing & Co.: 158–160.
    "Fourteen primes less than 1000000 possess this required property [in decimal]".
    Solution to problem 2420, "Only 19?" by M. J. Zerger.
  7. ^ Subramani, K. (2020). "On two interesting properties of primes, p, with reciprocals in base 10 having maximum period p – 1" (PDF). J. of Math. Sci. & Comp. Math. 1 (2). Auburn, WA: S.M.A.R.T.: 198–200. doi:10.15864/jmscm.1204. eISSN 2644-3368. S2CID 235037714.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A007450 (Decimal expansion of 1/17.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-11-24.