Projected normal distribution

Probability distribution
Projected normal distribution
Notation P N n ( μ , Σ ) {\displaystyle {\mathcal {PN}}_{n}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})}
Parameters μ R n {\displaystyle {\boldsymbol {\mu }}\in \mathbb {R} ^{n}} (location)
Σ R n × n {\displaystyle {\boldsymbol {\Sigma }}\in \mathbb {R} ^{n\times n}} (scale)
Support θ [ 0 , π ] n 2 × [ 0 , 2 π ) {\displaystyle {\boldsymbol {\theta }}\in [0,\pi ]^{n-2}\times [0,2\pi )}
PDF complicated, see text

In directional statistics, the projected normal distribution (also known as offset normal distribution or angular normal distribution)[1] is a probability distribution over directions that describes the radial projection of a random variable with n-variate normal distribution over the unit (n-1)-sphere.

Definition and properties

Given a random variable X R n {\displaystyle {\boldsymbol {X}}\in \mathbb {R} ^{n}} that follows a multivariate normal distribution N n ( μ , Σ ) {\displaystyle {\mathcal {N}}_{n}({\boldsymbol {\mu }},\,{\boldsymbol {\Sigma }})} , the projected normal distribution P N n ( μ , Σ ) {\displaystyle {\mathcal {PN}}_{n}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})} represents the distribution of the random variable Y = X X {\displaystyle {\boldsymbol {Y}}={\frac {\boldsymbol {X}}{\lVert {\boldsymbol {X}}\rVert }}} obtained projecting X {\displaystyle {\boldsymbol {X}}} over the unit sphere. In the general case, the projected normal distribution can be asymmetric and multimodal. In case μ {\displaystyle {\boldsymbol {\mu }}} is orthogonal to an eigenvector of Σ {\displaystyle {\boldsymbol {\Sigma }}} , the distribution is symmetric.[2]

Density function

The density of the projected normal distribution P N n ( μ , Σ ) {\displaystyle {\mathcal {PN}}_{n}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})} can be constructed from the density of its generator n-variate normal distribution N n ( μ , Σ ) {\displaystyle {\mathcal {N}}_{n}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})} by re-parametrising to n-dimensional spherical coordinates and then integrating over the radial coordinate.

In spherical coordinates with radial component r [ 0 , ) {\displaystyle r\in [0,\infty )} and angles θ = ( θ 1 , , θ n 1 ) [ 0 , π ] n 2 × [ 0 , 2 π ) {\displaystyle {\boldsymbol {\theta }}=(\theta _{1},\dots ,\theta _{n-1})\in [0,\pi ]^{n-2}\times [0,2\pi )} , a point x = ( x 1 , , x n ) R n {\displaystyle {\boldsymbol {x}}=(x_{1},\dots ,x_{n})\in \mathbb {R} ^{n}} can be written as x = r v {\displaystyle {\boldsymbol {x}}=r{\boldsymbol {v}}} , with v = 1 {\displaystyle \lVert {\boldsymbol {v}}\rVert =1} . The joint density becomes

p ( r , θ | μ , Σ ) = r n 1 | Σ | ( 2 π ) n 2 e 1 2 ( r v μ ) Σ 1 ( r v μ ) {\displaystyle p(r,{\boldsymbol {\theta }}|{\boldsymbol {\mu }},{\boldsymbol {\Sigma }})={\frac {r^{n-1}}{{\sqrt {|{\boldsymbol {\Sigma }}|}}(2\pi )^{\frac {n}{2}}}}e^{-{\frac {1}{2}}(r{\boldsymbol {v}}-{\boldsymbol {\mu }})^{\top }\Sigma ^{-1}(r{\boldsymbol {v}}-{\boldsymbol {\mu }})}}

and the density of P N n ( μ , Σ ) {\displaystyle {\mathcal {PN}}_{n}({\boldsymbol {\mu }},{\boldsymbol {\Sigma }})} can then be obtained as[3]

p ( θ | μ , Σ ) = 0 p ( r , θ | μ , Σ ) d r . {\displaystyle p({\boldsymbol {\theta }}|{\boldsymbol {\mu }},{\boldsymbol {\Sigma }})=\int _{0}^{\infty }p(r,{\boldsymbol {\theta }}|{\boldsymbol {\mu }},{\boldsymbol {\Sigma }})dr.}

Circular distribution

Parametrising the position on the unit circle in polar coordinates as v = ( cos θ , sin θ ) {\displaystyle {\boldsymbol {v}}=(\cos \theta ,\sin \theta )} , the density function can be written with respect to the parameters μ {\displaystyle {\boldsymbol {\mu }}} and Σ {\displaystyle {\boldsymbol {\Sigma }}} of the initial normal distribution as

p ( θ | μ , Σ ) = e 1 2 μ Σ 1 μ 2 π | Σ | v Σ 1 v ( 1 + T ( θ ) Φ ( T ( θ ) ) ϕ ( T ( θ ) ) ) I [ 0 , 2 π ) ( θ ) {\displaystyle p(\theta |{\boldsymbol {\mu }},{\boldsymbol {\Sigma }})={\frac {e^{-{\frac {1}{2}}{\boldsymbol {\mu }}^{\top }{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }}}}{2\pi {\sqrt {|{\boldsymbol {\Sigma }}|}}{\boldsymbol {v}}^{\top }{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {v}}}}\left(1+T(\theta ){\frac {\Phi (T(\theta ))}{\phi (T(\theta ))}}\right)I_{[0,2\pi )}(\theta )}

where ϕ {\displaystyle \phi } and Φ {\displaystyle \Phi } are the density and cumulative distribution of a standard normal distribution, T ( θ ) = v Σ 1 μ v Σ 1 v {\displaystyle T(\theta )={\frac {{\boldsymbol {v}}^{\top }{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }}}{\sqrt {{\boldsymbol {v}}^{\top }{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {v}}}}}} , and I {\displaystyle I} is the indicator function.[2]

In the circular case, if the mean vector μ {\displaystyle {\boldsymbol {\mu }}} is parallel to the eigenvector associated to the largest eigenvalue of the covariance, the distribution is symmetric and has a mode at θ = α {\displaystyle \theta =\alpha } and either a mode or an antimode at θ = α + π {\displaystyle \theta =\alpha +\pi } , where α {\displaystyle \alpha } is the polar angle of μ = ( r cos α , r sin α ) {\displaystyle {\boldsymbol {\mu }}=(r\cos \alpha ,r\sin \alpha )} . If the mean is parallel to the eigenvector associated to the smallest eigenvalue instead, the distribution is also symmetric but has either a mode or an antimode at θ = α {\displaystyle \theta =\alpha } and an antimode at θ = α + π {\displaystyle \theta =\alpha +\pi } .[4]

Spherical distribution

Parametrising the position on the unit sphere in spherical coordinates as v = ( cos θ 1 sin θ 2 , sin θ 1 sin θ 2 , cos θ 2 ) {\displaystyle {\boldsymbol {v}}=(\cos \theta _{1}\sin \theta _{2},\sin \theta _{1}\sin \theta _{2},\cos \theta _{2})} where θ = ( θ 1 , θ 2 ) {\displaystyle {\boldsymbol {\theta }}=(\theta _{1},\theta _{2})} are the azimuth θ 1 [ 0 , 2 π ) {\displaystyle \theta _{1}\in [0,2\pi )} and inclination θ 2 [ 0 , π ] {\displaystyle \theta _{2}\in [0,\pi ]} angles respectively, the density function becomes

p ( θ | μ , Σ ) = e 1 2 μ Σ 1 μ | Σ | ( 2 π v Σ 1 v ) 3 2 ( Φ ( T ( θ ) ) ϕ ( T ( θ ) ) + T ( θ ) ( 1 + T ( θ ) Φ ( T ( θ ) ) ϕ ( T ( θ ) ) ) ) I [ 0 , 2 π ) ( θ 1 ) I [ 0 , π ] ( θ 2 ) {\displaystyle p({\boldsymbol {\theta }}|{\boldsymbol {\mu }},{\boldsymbol {\Sigma }})={\frac {e^{-{\frac {1}{2}}{\boldsymbol {\mu }}^{\top }{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }}}}{{\sqrt {|{\boldsymbol {\Sigma }}|}}\left(2\pi {\boldsymbol {v}}^{\top }{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {v}}\right)^{\frac {3}{2}}}}\left({\frac {\Phi (T({\boldsymbol {\theta }}))}{\phi (T({\boldsymbol {\theta }}))}}+T({\boldsymbol {\theta }})\left(1+T({\boldsymbol {\theta }}){\frac {\Phi (T({\boldsymbol {\theta }}))}{\phi (T({\boldsymbol {\theta }}))}}\right)\right)I_{[0,2\pi )}(\theta _{1})I_{[0,\pi ]}(\theta _{2})}

where ϕ {\displaystyle \phi } , Φ {\displaystyle \Phi } , T {\displaystyle T} , and I {\displaystyle I} have the same meaning as the circular case.[5]

See also

References

  1. ^ Wang & Gelfand 2013.
  2. ^ a b Hernandez-Stumpfhauser & Breidt 2017, p. 115. sfn error: no target: CITEREFHernandez-StumpfhauserBreidt2017 (help)
  3. ^ Hernandez-Stumpfhauser & Breidt 2017, p. 117. sfn error: no target: CITEREFHernandez-StumpfhauserBreidt2017 (help)
  4. ^ Hernandez-Stumpfhauser & Breidt 2017, Supplementary material, p. 1. sfn error: no target: CITEREFHernandez-StumpfhauserBreidt2017 (help)
  5. ^ Hernandez-Stumpfhauser & Breidt 2017, p. 123. sfn error: no target: CITEREFHernandez-StumpfhauserBreidt2017 (help)

Sources

  • Hernandez-Stumpfhauser, Daniel; Breidt, F. Jay; van der Woerd, Mark J. (2017). "The General Projected Normal Distribution of Arbitrary Dimension: Modeling and Bayesian Inference". Bayesian Analysis. 12 (1): 113–133.
  • Wang, Fangpo; Gelfand, Alan E (2013). "Directional data analysis under the general projected normal distribution". Statistical methodology. 10 (1). Elsevier: 113–127.