Quantifier rank

In mathematical logic, the quantifier rank of a formula is the depth of nesting of its quantifiers. It plays an essential role in model theory.

Notice that the quantifier rank is a property of the formula itself (i.e. the expression in a language). Thus two logically equivalent formulae can have different quantifier ranks, when they express the same thing in different ways.

Definition

Quantifier Rank of a Formula in First-order language (FO)

Let φ be a FO formula. The quantifier rank of φ, written qr(φ), is defined as

  • q r ( φ ) = 0 {\displaystyle qr(\varphi )=0} , if φ is atomic.
  • q r ( φ 1 φ 2 ) = q r ( φ 1 φ 2 ) = m a x ( q r ( φ 1 ) , q r ( φ 2 ) ) {\displaystyle qr(\varphi _{1}\land \varphi _{2})=qr(\varphi _{1}\lor \varphi _{2})=max(qr(\varphi _{1}),qr(\varphi _{2}))} .
  • q r ( ¬ φ ) = q r ( φ ) {\displaystyle qr(\lnot \varphi )=qr(\varphi )} .
  • q r ( x φ ) = q r ( φ ) + 1 {\displaystyle qr(\exists _{x}\varphi )=qr(\varphi )+1} .
  • q r ( x φ ) = q r ( φ ) + 1 {\displaystyle qr(\forall _{x}\varphi )=qr(\varphi )+1} .

Remarks

  • We write FO[n] for the set of all first-order formulas φ with q r ( φ ) n {\displaystyle qr(\varphi )\leq n} .
  • Relational FO[n] (without function symbols) is always of finite size, i.e. contains a finite number of formulas
  • Notice that in Prenex normal form the Quantifier Rank of φ is exactly the number of quantifiers appearing in φ.

Quantifier Rank of a higher order Formula

  • For Fixpoint logic, with a least fix point operator LFP: q r ( [ L F P ϕ ] y ) = 1 + q r ( ϕ ) {\displaystyle qr([LFP_{\phi }]y)=1+qr(\phi )}

Examples

  • A sentence of quantifier rank 2:
x y R ( x , y ) {\displaystyle \forall x\exists yR(x,y)}
  • A formula of quantifier rank 1:
x R ( y , x ) x R ( x , y ) {\displaystyle \forall xR(y,x)\wedge \exists xR(x,y)}
  • A formula of quantifier rank 0:
R ( x , y ) x y {\displaystyle R(x,y)\wedge x\neq y}
  • A sentence in prenex normal form of quantifier rank 3:
x y z ( ( x y x R y ) ( x z z R x ) ) {\displaystyle \forall x\exists y\exists z((x\neq y\wedge xRy)\wedge (x\neq z\wedge zRx))}
  • A sentence, equivalent to the previous, although of quantifier rank 2:
x ( y ( x y x R y ) ) z ( x z z R x ) ) {\displaystyle \forall x(\exists y(x\neq y\wedge xRy))\wedge \exists z(x\neq z\wedge zRx))}

See also

References

  • Ebbinghaus, Heinz-Dieter; Flum, Jörg (1995), Finite Model Theory, Springer, ISBN 978-3-540-60149-4.
  • Grädel, Erich; Kolaitis, Phokion G.; Libkin, Leonid; Maarten, Marx; Spencer, Joel; Vardi, Moshe Y.; Venema, Yde; Weinstein, Scott (2007), Finite model theory and its applications, Texts in Theoretical Computer Science. An EATCS Series, Berlin: Springer-Verlag, p. 133, ISBN 978-3-540-00428-8, Zbl 1133.03001.

External links

  • Quantifier Rank Spectrum of L-infinity-omega BA Thesis, 2000
  • v
  • t
  • e
  • v
  • t
  • e
Mathematical logic
General
Theorems (list)
 and paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types of sets
Maps and cardinality
Set theories
Formal systems (list),
language and syntax
Example axiomatic
systems (list)
Proof theory
Model theory
Computability theory
Related
icon Mathematics portal