Quantum bus

A quantum bus is a device which can be used to store or transfer information between independent qubits in a quantum computer, or combine two qubits into a superposition. It is the quantum analog of a classical bus.

There are several physical systems that can be used to realize a quantum bus, including trapped ions, photons, and superconducting qubits. Trapped ions, for example, can use the quantized motion of ions (phonons) as a quantum bus, while photons can act as a carrier of quantum information by utilizing the increased interaction strength provided by cavity quantum electrodynamics. Circuit quantum electrodynamics, which uses superconducting qubits coupled to a microwave cavity on a chip, is another example of a quantum bus that has been successfully demonstrated in experiments.[1]

History

The concept was first demonstrated by researchers at Yale University and the National Institute of Standards and Technology (NIST) in 2007.[1][2][3] Prior to this experimental demonstration, the quantum bus had been described by scientists at NIST as one of the possible cornerstone building blocks in quantum computing architectures.[4][5]

Mathematical description

A quantum bus for superconducting qubits can be built with a resonance cavity. The hamiltonian for a system with qubit A, qubit B, and the resonance cavity or quantum bus connecting the two is H ^ = H ^ r + j = A , B H ^ j + j = A , B h g i ( a ^ σ ^ j + a ^ σ ^ + j ) {\displaystyle {\hat {H}}={\hat {H}}_{r}+\sum \limits _{j=A,B}{\hat {H}}_{j}+\sum \limits _{j=A,B}hg_{i}\left({\hat {a}}^{\dagger }{\hat {\sigma }}_{-}^{j}+{\hat {a}}{\hat {\sigma }}_{\text{+}}^{j}\right)} where H ^ j = 1 2 ω j σ ^ + j σ ^ j {\displaystyle {\hat {H}}_{j}={\frac {1}{2}}\hbar \omega _{j}{\hat {\sigma }}_{+}^{j}{\hat {\sigma }}_{-}^{j}} is the single qubit hamiltonian, σ ^ + j σ ^ j {\displaystyle {\hat {\sigma }}_{+}^{j}{\hat {\sigma }}_{-}^{j}} is the raising or lowering operator for creating or destroying excitations in the j {\displaystyle j} th qubit, and ω j {\displaystyle \hbar \omega _{j}} is controlled by the amplitude of the D.C. and radio frequency flux bias.[6]

References

  1. ^ a b J. Majer; J. M. Chow; J. M. Gambetta; Jens Koch; B. R. Johnson; J. A. Schreier; L. Frunzio; D. I. Schuster; A. A. Houck; A. Wallraff; A. Blais; M. H. Devoret; S. M. Girvin; R. J. Schoelkopf (2007-09-27). "Coupling superconducting qubits via a cavity bus". Nature. 449 (7161): 443–447. arXiv:0709.2135. Bibcode:2007Natur.449..443M. doi:10.1038/nature06184. PMID 17898763. S2CID 8467224.
  2. ^ M. A. Sillanpää; J. I. Park; R. W. Simmonds (2007-09-27). "Coherent quantum state storage and transfer between two phase qubits via a resonant cavity". Nature. 449 (7161): 438–42. arXiv:0709.2341. Bibcode:2007Natur.449..438S. doi:10.1038/nature06124. PMID 17898762. S2CID 4357331.
  3. ^ "All Aboard the Quantum 'Bus'". 2007-09-27. Retrieved 2008-12-12.
  4. ^ G.K. Brennen; D. Song; C.J. Williams (2003). "Quantum-computer architecture using nonlocal interactions". Physical Review A. 67 (5): 050302. arXiv:quant-ph/0301012. Bibcode:2003PhRvA..67e0302B. doi:10.1103/PhysRevA.67.050302. S2CID 118895065.
  5. ^ Brooks, Michael (2012-12-06). Quantum Computing and Communications. Springer Science & Business Media. ISBN 978-1-4471-0839-9.
  6. ^ Sillanpää, Mika A.; Park, Jae I.; Simmonds, Raymond W. (2007). "Coherent quantum state storage and transfer between two phase qubits via a resonant cavity". Nature. 449 (7161): 438–442. arXiv:0709.2341. Bibcode:2007Natur.449..438S. doi:10.1038/nature06124. PMID 17898762. S2CID 4357331.
  • v
  • t
  • e
BackgroundFundamentalsFormulationsEquationsInterpretationsExperimentsScienceTechnologyExtensionsRelated
  • Category
Stub icon

This quantum mechanics-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e