Quasi-Frobenius Lie algebra

In mathematics, a quasi-Frobenius Lie algebra

( g , [ , ] , β ) {\displaystyle ({\mathfrak {g}},[\,\,\,,\,\,\,],\beta )}

over a field k {\displaystyle k} is a Lie algebra

( g , [ , ] ) {\displaystyle ({\mathfrak {g}},[\,\,\,,\,\,\,])}

equipped with a nondegenerate skew-symmetric bilinear form

β : g × g k {\displaystyle \beta :{\mathfrak {g}}\times {\mathfrak {g}}\to k} , which is a Lie algebra 2-cocycle of g {\displaystyle {\mathfrak {g}}} with values in k {\displaystyle k} . In other words,
β ( [ X , Y ] , Z ) + β ( [ Z , X ] , Y ) + β ( [ Y , Z ] , X ) = 0 {\displaystyle \beta \left(\left[X,Y\right],Z\right)+\beta \left(\left[Z,X\right],Y\right)+\beta \left(\left[Y,Z\right],X\right)=0}

for all X {\displaystyle X} , Y {\displaystyle Y} , Z {\displaystyle Z} in g {\displaystyle {\mathfrak {g}}} .

If β {\displaystyle \beta } is a coboundary, which means that there exists a linear form f : g k {\displaystyle f:{\mathfrak {g}}\to k} such that

β ( X , Y ) = f ( [ X , Y ] ) , {\displaystyle \beta (X,Y)=f(\left[X,Y\right]),}

then

( g , [ , ] , β ) {\displaystyle ({\mathfrak {g}},[\,\,\,,\,\,\,],\beta )}

is called a Frobenius Lie algebra.

Equivalence with pre-Lie algebras with nondegenerate invariant skew-symmetric bilinear form

If ( g , [ , ] , β ) {\displaystyle ({\mathfrak {g}},[\,\,\,,\,\,\,],\beta )} is a quasi-Frobenius Lie algebra, one can define on g {\displaystyle {\mathfrak {g}}} another bilinear product {\displaystyle \triangleleft } by the formula

β ( [ X , Y ] , Z ) = β ( Z Y , X ) {\displaystyle \beta \left(\left[X,Y\right],Z\right)=\beta \left(Z\triangleleft Y,X\right)} .

Then one has [ X , Y ] = X Y Y X {\displaystyle \left[X,Y\right]=X\triangleleft Y-Y\triangleleft X} and

( g , ) {\displaystyle ({\mathfrak {g}},\triangleleft )}

is a pre-Lie algebra.

See also

  • Lie coalgebra
  • Lie bialgebra
  • Lie algebra cohomology
  • Frobenius algebra
  • Quasi-Frobenius ring

References

  • Jacobson, Nathan, Lie algebras, Republication of the 1962 original. Dover Publications, Inc., New York, 1979. ISBN 0-486-63832-4
  • Vyjayanthi Chari and Andrew Pressley, A Guide to Quantum Groups, (1994), Cambridge University Press, Cambridge ISBN 0-521-55884-0.